Wavelength for highest radiation per unit wavelength

skate_nerd
Messages
174
Reaction score
0

Homework Statement


At what wavelength does a cavity at 6000 degrees Kelvin radiate most per unit wavelength?


Homework Equations


$$\rho_T(\lambda)d\lambda=\frac{8\pi{hc}}{\lambda^5}\frac{d\lambda}{e^{{hc}/{\lambda{kT}}}-1}$$


The Attempt at a Solution


I'm pretty new to this whole topic, so don't judge me if I'm totally off...
First off can't the $$d\lambda$$'s cancel each other out? I'm not sure why the book I am using writes this equation like they did if they could cancel out that easily, but anyways I got rid of them because it seems to just make this more confusing for me otherwise.
So I figured if it wants the wavelength for highest radiation (per unit wavelength), I should take the derivative of $$\rho_T(\lambda)d\lambda$$ with respect to the wavelength, and set that expression equal to zero.
However now I am at an impasse, seeing as how solving for lambda would probably be really difficult, and I am not even sure if I am working in the correct direction. Any help would be appreciated much. Thanks
 
Physics news on Phys.org
skate_nerd said:

Homework Statement


At what wavelength does a cavity at 6000 degrees Kelvin radiate most per unit wavelength?

Homework Equations


$$\rho_T(\lambda)d\lambda=\frac{8\pi{hc}}{\lambda^5}\frac{d\lambda}{e^{{hc}/{\lambda{kT}}}-1}$$

The Attempt at a Solution


I'm pretty new to this whole topic, so don't judge me if I'm totally off...
First off can't the $$d\lambda$$'s cancel each other out? I'm not sure why the book I am using writes this equation like they did if they could cancel out that easily, but anyways I got rid of them because it seems to just make this more confusing for me otherwise.
So I figured if it wants the wavelength for highest radiation (per unit wavelength), I should take the derivative of $$\rho_T(\lambda)d\lambda$$ with respect to the wavelength, and set that expression equal to zero.
However now I am at an impasse, seeing as how solving for lambda would probably be really difficult, and I am not even sure if I am working in the correct direction. Any help would be appreciated much. Thanks

You are working in the correct direction. Differentiate ##\rho_T(\lambda)## and set it equal to zero. It is hard to solve. But if you set ##x=\frac{hc}{\lambda{kT}}## and express the whole expression in terms of the dimensionless variable x you'll get a single equation for x you can solve numerically. See Wien's Displacement Law.
 
  • Like
Likes 1 person
I actually did all that a bit ago and solved to get a wavelength of 4798 angstroms, aka blue light. Sounds about right. Then about 20 seconds ago I just realized I could have avoided that whole mess and simply used Wien's Displacement Law. Got me the same exact answer. -_- oh well
 
By the way, I am not new to LaTeX but how do you write an equation on this site without using the double dollar signs? Obviously "\(___\)" doesn't work...
 
Last edited:
skate_nerd said:
By the way, I am not new to LaTeX but how do you write an equation on this site without using the double dollar signs? Obviously "\(___\)" doesn't work...

Use double '#' signs if you want the math to stay on the same line.
 
  • Like
Likes 1 person
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top