Weird stuff on infinite numerical sequences in a Soviet book

Click For Summary
SUMMARY

The discussion centers on the treatment of infinite numerical sequences as presented in the book "Calculus: Basic Concepts for High School." A specific sequence is analyzed: 1, -1, 1/3, -1/3, 1/5, -1/5, 1/7, -1/7, with a focus on the legitimacy of including a term with a coefficient of 1/0. Participants agree that while the first term may seem problematic, it is acceptable to start the sequence from n=2 or to define it over any infinite subset of natural numbers. The importance of clearly stating restrictions on n is emphasized for clarity in mathematical definitions.

PREREQUISITES
  • Understanding of infinite numerical sequences
  • Familiarity with mathematical notation and terminology
  • Basic knowledge of convergence in sequences
  • Ability to interpret mathematical definitions and restrictions
NEXT STEPS
  • Research the concept of defining sequences over subsets of natural numbers
  • Explore the implications of starting sequences from different indices, such as n=2
  • Study convergence criteria for infinite sequences
  • Examine the treatment of undefined terms in mathematical sequences
USEFUL FOR

Mathematicians, educators, and students interested in advanced calculus concepts, particularly those focusing on infinite sequences and their definitions.

inthenickoftime
Messages
17
Reaction score
2
TL;DR
It looks like an undefined operation
The book is Calculus: Basic Concepts for High School
on the first page you are given the following sequence:

1, -1, 1/3, -1/3, 1/5, -1/5, 1/7, -1/7, ...

several pages later the rule is given:

Untitled.jpg

in the second rule, for the first term in the sequence, the coefficient of one of the terms is 1/0. How legitimate is this?
 
Mathematics news on Phys.org
Start with ##n=2## instead of ##n=1## or make a shift. For most purposes in analysis, leaving out finitely many terms of a sequence doesn't matter since we are mostly interested in the tail of the sequence.
 
Last edited by a moderator:
  • Like
Likes   Reactions: inthenickoftime
Math_QED said:
Start with ##n=2## instead of ##n=0## or make a shift. For most purposes in analysis, leaving out finitely many terms of a sequence doesn't matter since we are mostly interested in the tail of the sequence.
It still feels weird. On the previous page the author gives his definition of an infinite numerical sequence as a rule assigning every natural number to a definite term in the sequence, but 1 doesn't correspond with anything, at least for the given expression. But I see what you mean
 
inthenickoftime said:
It still feels weird. On the previous page the author gives his definition of an infinite numerical sequence as a rule assigning every natural number to a definite term in the sequence, but 1 doesn't correspond with anything, at least for the given expression. But I see what you mean
You can define a sequence on any infinite subset of the natural numbers. In other words, you can do things like:

Define the sequence for ##n = n_0, n_0 +1, n_0 + 2 \dots##, where ##n_0## can be any starting number.

Define the sequence for odd, even or square or prime ##n##. For example, you could define a sequence as ##a_n##, where ##n## is prime.

That said, in all these cases you ought to make clear the restriction on ##n##. E.g. ##n \ge 2## or ##n## even or ##n## prime etc.
 
  • Like
Likes   Reactions: inthenickoftime
PeroK said:
You can define a sequence on any infinite subset of the natural numbers. In other words, you can do things like:

Define the sequence for ##n = n_0, n_0 +1, n_0 + 2 \dots##, where ##n_0## can be any starting number.

Define the sequence for odd, even or square or prime ##n##. For example, you could define a sequence as ##a_n##, where ##n## is prime.

That said, in all these cases you ought to make clear the restriction on ##n##. E.g. ##n \ge 2## or ##n## even or ##n## prime etc.
No restrictions were given. You can check the book online for free, it was rewritten in modern style. Too bad as I was really looking forward to it.
 
The yn pattern listed there only applies to n>1, for y1 it does not apply. If you care about the absolute value of the limit you need to consider y1 separately, if you only care about convergence you do not.
 
  • Like
Likes   Reactions: inthenickoftime

Similar threads

  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
6
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K