vkash
- 316
- 1
consider this function f(x)=[x[\frac{1}{x}]] ([x] represent greatest integer less than or equal to x or in short GIF )
internal brackets over 1/x and external brackets are around full body of function.
discuss on these points(means either are these correct incorrect)
Statement 1: this function is discontinuous at infinitely points.
Statement 2: this function is discontinuous for infinitely many points for x belongs to (0,1)
I think both statements are correct.
Put x=1/10. It will give 1. but if I put 1/(10.1).1 it will give zero. So it's discontinuous function. similarly we can say that it is discontinuous at infinitely many points between 0 to 1.
If second statement is correct than first will definitely correct...
when result from internal GIF will smaller than 1/x it will give zero, else output should 1.
am i correct?
if not then where am i wrong.
Is there any way to solve such questions on wolframalpha
internal brackets over 1/x and external brackets are around full body of function.
discuss on these points(means either are these correct incorrect)
Statement 1: this function is discontinuous at infinitely points.
Statement 2: this function is discontinuous for infinitely many points for x belongs to (0,1)
I think both statements are correct.
Put x=1/10. It will give 1. but if I put 1/(10.1).1 it will give zero. So it's discontinuous function. similarly we can say that it is discontinuous at infinitely many points between 0 to 1.
If second statement is correct than first will definitely correct...
when result from internal GIF will smaller than 1/x it will give zero, else output should 1.
am i correct?
if not then where am i wrong.
Is there any way to solve such questions on wolframalpha
Last edited: