What are Eigenvectors and Eigenvalues in Relation to Matrices?

Jhenrique
Messages
676
Reaction score
4
Given a vector ##\vec{r} = x \hat{x} + y \hat{y}## is possbile to write it as ##\vec{r} = r \hat{r}## being ##r = \sqrt{x^2+y^2}## and ##\hat{r} = \cos(\theta) \hat{x} + \sin(\theta) \hat{y}##. Speaking about matrices now, the the eigenvalues are like the modulus of a vector and the eigenvectors are like the unit vectors associated to modulus of a vector?
 
Physics news on Phys.org
Jhenrique said:
Given a vector ##\vec{r} = x \hat{x} + y \hat{y}## is possbile to write it as ##\vec{r} = r \hat{r}## being ##r = \sqrt{x^2+y^2}## and ##\hat{r} = \cos(\theta) \hat{x} + \sin(\theta) \hat{y}##. Speaking about matrices now, the the eigenvalues are like the modulus of a vector and the eigenvectors are like the unit vectors associated to modulus of a vector?
I don't think these analogies are useful or even correct. The matrices that we're talking about here are square, meaning that they are transformations of some vector space to itself.

The defining relationship between a matrix and its eigenvectors and eigenvalues is this:
Ax = λx, where x is a nonzero vector, and λ is a scalar.

In a sense, the eigenvectors are preferred directions. Any vector with this same direction gets mapped by the transformation to a multiple of itself.

A given transformation from a vector space to itself can have many matrices that represent it, depending on that basis that is used for that space. If an n x n matrix has n distinct eigenvectors, it's possible to write the matrix in terms of this basis of eigenvectors, which results in a diagonal matrix, with the eigenvalues on the main diagonal.
 
Last edited:
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top