What are injective and surjective maps in vector spaces?

ylem
Messages
30
Reaction score
1
Hello! I hope I've posted this in the correct section...

I'm a 3rd year undergraduate and we're currently studying Vector Spaces (in QM) and I just don't understand what injective (one-to-one) and surjective (onto) mean? As a result I have no idea what an isomorphism is!

I realize this is probably a very simple question, but I'm just struggling so much with the course!

Cheers, Samantha
 
Physics news on Phys.org
Ok, the first thing you have two focus on, is that you have two SETS, call them A and B.
Both A and B has elements, determinable by some criterion.


Now, a MAPPING from A to B takes each element in A and "relates" it to some unique element in B.

To say that a mapping is injective means that there are no two elements in A that are related to the same element in B. Thus, knowing the mapping procedure along with the element in B, we can DEDUCE from this what is the element in A which is related to the known element in A.
If we denote the element in B related to element x in A with f(x), this means that if f(x)=f(y), then x=y (only ONE unique element in A is related to the value of f(x))

To say that a map is SURJECTIVE means that whatever element Y in B you pick out, there exist an x in A so that Y=f(x).
The map covers B, so to speak.

Is this clear?
 
Yeah! Thanks a lot :-)
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top