What are the considerations when finding vector equations for lines and planes?

  • Thread starter Thread starter suspenc3
  • Start date Start date
  • Tags Tags
    Lines Planes
suspenc3
Messages
400
Reaction score
0
A few Questions:

a)when finding vector equations (for lines), what do you different when they give you a vector and a line parallel to this vector, and a vector and a line perpendicular to the vector.

b)concerning planes, can someone briefly explain the normal vector.

Thanks.
 
Physics news on Phys.org
suspenc3 said:
A few Questions:

a)when finding vector equations (for lines), what do you different when they give you a vector and a line parallel to this vector, and a vector and a line perpendicular to the vector.

b)concerning planes, can someone briefly explain the normal vector.

Thanks.

I'll try to help with b).

The easiest way to copletely determine a plane is with one point T1 = (x1, y1, z1) (belonging to the plane) and a vector n which is perpendicular to the plane, which we call the normal vector. Now, let T = (x, y, z) be any point in the plane. Obviously, n must be perpendicular to the vector \vec{T_{1}T}, which implies n(r-r1)=0 ...(1), where r1 is the radius vector determined by the point T1, and r the radius vector determined by the point T. Further on, (1) directly implies A(x-x1) + B(y-y1)+ C(z-z1) = 0, where n=Ai+Bj+Ck. This is a general equation of a plane.
 
Yeah that explains it, so say they give you a point and a vector parallel to the plane, how would you get the Normal? Would you just cross the vector and the point?
 
suspenc3 said:
Yeah that explains it, so say they give you a point and a vector parallel to the plane, how would you get the Normal? Would you just cross the vector and the point?

A point and a vector parallel to a plane do not determine a plane. They determine an infinite number of planes.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top