What are the eigenvalues of P(A)?

  • Thread starter Thread starter chocolatefrog
  • Start date Start date
  • Tags Tags
    Eigenvalue Matrix
chocolatefrog
Messages
11
Reaction score
0

Homework Statement



αo, α1,..., αd \inℝ. Show that αo + α1λ + α2λ2 + ... + αdλd \inℝ is an eigenvalue of αoI + α1A + α2A2 + ... + αdAd \inℝ^{nxn}.


2. The attempt at a solution

If λ is an eigenvalue of A, then |A - Iλ| = 0. Also, λn is an eigenvalue An. So we basically have to somehow prove the following equation (after rearranging):

1(A - Iλ) + α2(A2 - Iλ2) + ... + αd(Ad - Iλd)| = O

3. Relevant equations

I can't seem to get my head around this one. I almost used the triangular inequality to prove it before I realized that these are determinants we are dealing with, not absolute values. :/
 
Physics news on Phys.org
So let P(z) be a polynomial. We wish to prove that P(\lambda) is an eigenvalue of P(A).

For each \mu\in \mathbb{C}, we can write

P(z)-\mu=r_0(z-r_1)...(z-r_n)

Thus

P(A)-\mu I = r_0(A-r_1 I)...(z-r_n I)

So P(A)-\mu I is invertible iff all (A-r_i I) is invertible. What does that imply for the eigenvalues?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top