What are the eigenvectors |E1> and |E2> of the energy?

ziad1985
Messages
244
Reaction score
0
|a'> and |a"> are both eigenvectors of eigenvalue a' and a" of an Operator A
and a' doesn't equal a",The hameltonien of the system is defined as
H=ε( |a'><a"| + |a"><a'| )
a)What are the eigenvectors |E1> and |E2> of the energy?

b)If the system was in the state |a'> at t=0 , write the system state at t>0

c)What is the probability to find the system in the |a"> state at t>0 if it was in |a'> at t=0?

Frankly the teacher solved it , but i have no idea how he came up with the result in (3) and (4) (For (1)(2)(3)(4) check the pics attached)
I understand (1) and (2) and how we can obtien them,any help for (3) and (4)?
 

Attachments

  • 1.JPG
    1.JPG
    15.7 KB · Views: 510
  • 2.JPG
    2.JPG
    17.2 KB · Views: 484
  • 3.JPG
    3.JPG
    13.9 KB · Views: 473
Last edited:
Physics news on Phys.org
The first thing he did was to write H as a matrix in the basis |a'>, |a''>. You got that part, right?
H=\left( \begin{array}{cc}0 &amp; \epsilon \\ \epsilon &amp; 0\end{array}\right)

Then (3) you simply find the eigenvectors of this matrix, which is an elementary linear algebra exercise.
Also, if you know the state at a certain time (say t=0) and you've written it out in the basis of energy eigenstates, the time dependence is really simple. Each term simply gets the familiar exponential factor.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top