What are the expansions of Bose functions for studying thermodynamic behavior?

erbilsilik
Messages
19
Reaction score
2

Homework Statement


To study the thermodynamic behavior of the limit $$z\rightarrow1$$ it is useful to get the expansions of $$g_{0}\left( z\right),g_{1}\left( z\right),g_{2}\left( z\right)$$

$$\alpha =-\ln z$$ which is small positive number. From, BE integral,
$$g_{1}\left( \alpha \right) =-ln\left( 1-z\right) =-ln\alpha+\dfrac {\alpha } {2}-\dfrac {\alpha ^{2}} {24}+O({\alpha ^{4}})$$
and hence

$$g_{0}\left( \alpha \right) =-\dfrac {\partial } {\partial \alpha }g_{1}\left( \alpha \right)=\dfrac {1} {\alpha }-\dfrac {1} {2}+\dfrac {\alpha } {12}O({\alpha ^{3}})$$

[Source: A.Khare, Fractional Statistics and Quantum Theory, Two Dimensional Bose Gas, p.113]

Could anyone help me to derive this expressions? I can't figure out what does it mean writing this functions in the powers of α.

Homework Equations


https://en.wikipedia.org/wiki/Polylogarithm (BE integral)

The Attempt at a Solution



[/B]
 
erbilsilik said:

Homework Statement


To study the thermodynamic behavior of the limit $$z\rightarrow1$$ it is useful to get the expansions of $$g_{0}\left( z\right),g_{1}\left( z\right),g_{2}\left( z\right)$$

$$\alpha =-\ln z$$ which is small positive number. From, BE integral,
$$g_{1}\left( \alpha \right) =-ln\left( 1-z\right) =-ln\alpha+\dfrac {\alpha } {2}-\dfrac {\alpha ^{2}} {24}+O({\alpha ^{4}})$$
and hence

$$g_{0}\left( \alpha \right) =-\dfrac {\partial } {\partial \alpha }g_{1}\left( \alpha \right)=\dfrac {1} {\alpha }-\dfrac {1} {2}+\dfrac {\alpha } {12}O({\alpha ^{3}})$$

[Source: A.Khare, Fractional Statistics and Quantum Theory, Two Dimensional Bose Gas, p.113]

Could anyone help me to derive this expressions? I can't figure out what does it mean writing this functions in the powers of α.

Homework Equations


https://en.wikipedia.org/wiki/Polylogarithm (BE integral)

The Attempt at a Solution


[/B]
Suggestion: Write ## z=exp(-\alpha) ## and you get a term ## ln(exp(\alpha)-1) ## plus another term ## ln(exp(\alpha))=\alpha ## In the first term (inside the ## ln ## ) expand ## exp(\alpha) =1+\alpha+(\alpha)^2/2 +... ## and subtract the 1. Then factor out ## \alpha ## and you get ## ln(\alpha)+ln(1+\alpha/2+..) ## The expansion of ## ln(1+u)=u ## for small ## u ##.
 
  • Like
Likes erbilsilik
  • Like
Likes Charles Link
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top