What Are the Key Concepts of Random Walks for a Grade 12 Project?

AI Thread Summary
Key concepts of random walks include the guaranteed return to the starting point in 1- or 2-D spaces, while this is not assured in 3-D environments. The project could also explore the application of random walks in stock market analysis, linking the concept to financial trends. Clarifying the implications of returning to the starting point would enhance understanding of the topic. Additionally, comparing Merten's function with random walks could provide a mathematical perspective. Overall, these angles can enrich the project and provide a comprehensive overview of random walks.
robyn
Messages
4
Reaction score
0
Hey there. Right now, I am doing a project for my grade 12 Geometry and Discrete class on any topic of our choosing. I have chosen the subject of RANDOM WALKS, and I am looking for any information on this subject at all, as I seemed to have hit a plateau of information, where all of my new information just seems to be repeating other resourses. The point of the project is to write a paper on the subject, and its uses. I am really open to any help or assistance on the topic at all, anything will be of help. Thanks! :smile:
 
Mathematics news on Phys.org
How about exploring the fact that in either 1- or 2-D random walks you are always guaranteed to eventually return to your starting point whereas it is not certain in 3-D?
 
That is actually quite a good idea, i never thought of that yet. That could be a good approach, i was also thinking of incorporating the stock market and how that relates too, but I'm not sure if that is pulling too far away from the topic or not.
 
Explaining exactly what is meant by "..guaranteed to eventually return to your starting point.." would be a worthy related topic. If you like number theory, you might compare Merten's function with random walks.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top