What Are the Left Cosets of H in S_3?

  • Thread starter Thread starter BustedBreaks
  • Start date Start date
  • Tags Tags
    Cosets
BustedBreaks
Messages
62
Reaction score
0
I am having trouble understanding this example:

Let G=S_3 and H={(1),(13)}. Then the left cosets of H in G are

(1)H=H
(12)H={(12), (12)(13)}={(12),(132)}=(132)HI cannot figure out how to produce this relation:

(12)H={(12), (12)(13)}={(12),(132)}=(132)H

I understand (12)H={(12), (12)(13)} but not how (12)(13) = (132) or the equivalence after that...
 
Physics news on Phys.org
Note that since (12) and (13) are in S3, they are actually the elements (12)(3) and (13)(2), where 3 and 2 are fixed respectively.

(12)(13), we do computation from right to left, so 1 goes to 3 from (13), then 3 goes to itself in (12). So we have (13...). Now 3 goes to 1 in (13) and 1 goes to 2 in (12), so in (13...) we have 3 goes to 2. Hence (132). This is a quick dirty answer to your question, but I think you should reread or review computations done using permutations.
 
daveyinaz said:
Note that since (12) and (13) are in S3, they are actually the elements (12)(3) and (13)(2), where 3 and 2 are fixed respectively.

(12)(13), we do computation from right to left, so 1 goes to 3 from (13), then 3 goes to itself in (12). So we have (13...). Now 3 goes to 1 in (13) and 1 goes to 2 in (12), so in (13...) we have 3 goes to 2. Hence (132). This is a quick dirty answer to your question, but I think you should reread or review computations done using permutations.

Okay so I get your method here and I am trying to apply it to this one (23)(13) but I am not getting the answer the book has which is (123)

I set it up like this

(23) (13)
123 123
132 321

then

so 1 goes to 3 then 3 goes to 2, 2 goes to 2 then 2 goes to 3, 3 goes to 1 and 1 goes to 1 so I get 231... I know you said your way was quick and dirty, so maybe I am missing something completely?

EDIT:

Okay so I'm pretty sure that 231 and 123 are the same thing but is there a preference for writing it out?
 
The convention is to start with the smallest number.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...

Similar threads

Replies
13
Views
569
Replies
1
Views
1K
Replies
4
Views
2K
Replies
5
Views
2K
Replies
2
Views
2K
Replies
4
Views
7K
Replies
5
Views
2K
Back
Top