Petar Mali
- 283
- 0
If we have case
\sigma=\frac{1}{2}-\frac{1}{N}\sum_{\bf{k}}\langle\hat{S}^-\hat{S}^+\rangle_{\bf{k}}
where \sigma is magnetisation. How we know that \sigma must be less than \frac{1}{2}. Or why is
\frac{1}{N}\sum_{\bf{k}}\langle\hat{S}^-\hat{S}^+\rangle_{\bf{k}}>0
Thanks for your answer.
\sigma=\frac{1}{2}-\frac{1}{N}\sum_{\bf{k}}\langle\hat{S}^-\hat{S}^+\rangle_{\bf{k}}
where \sigma is magnetisation. How we know that \sigma must be less than \frac{1}{2}. Or why is
\frac{1}{N}\sum_{\bf{k}}\langle\hat{S}^-\hat{S}^+\rangle_{\bf{k}}>0
Thanks for your answer.
Last edited: