unscientific
- 1,728
- 13
Homework Statement
Part(a)/(b)/(c): Fourier transform the following:
Part(d): Prove the convolution theorem
Part (e): Find total displacement
Homework Equations
The Attempt at a Solution
Part(a)
f = \frac {1}{sqrt{2\pi}} \int_{-\infty}{\infty} F e^{-iωt} dω
\frac {1}{\sqrt{2\pi}} \int_{-T}{T}
= \frac{1}{iω\sqrt{2\pi}} [e^{iωT} - e^{-iωT}]
= \sqrt{\frac{2}{\pi}} \frac {sin (ωt)}{ω}
Part (b)
F_2 = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{0}e^{-at}e^{iωt} dt + \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty}e^{-at}e^{iωt} dt
= -\frac{2a}{\sqrt{2\pi}(a^2 + ω^2)}
Part(c)
Using result from (b):
F_2 = -\frac{2a}{\sqrt{2\pi}(a^2 + ω^2)}
Let a = 1,
e^{-|t|} = -\frac{1}{2\pi} \int_{-\infty}^{\infty} \frac {2}{1+ω^2} e^{-iωt} dω
t→-t,
e^{-|-t|} = \frac {1}{\pi} \int_{-\infty}^{\infty} \frac {1}{1+ω^2} e^{iωt} dω
t→ω,
e^{-|ω|} = \frac {1}{\pi} \int_{-\infty}^{\infty} \frac {1}{1+t^2} e^{iωt} dt
Part(e)
V_{(ω)} = \sqrt{2\pi} F_{(ω)}G_{(ω)} = \frac {2}{\pi} \frac {a sin (ωT)}{a^2 + ω^2}
sin (ωT) = \frac {1}{2i} (e^{iωT} - e^{-iωT}) ,
Taking inverse Fourier transform of Vω:
V_{(t)} = \frac {1}{i\pi}(\frac{a}{\sqrt{2\pi}}) \int_{-\infty}^{\infty} \frac {1}{a^2 + ω^2} e^{iω(T-t)} dω + \frac {1}{i\pi}(\frac{a}{\sqrt{2\pi}}) \int_{-\infty}^{\infty} \frac {1}{a^2 + ω^2} e^{-iω(t+T)} dω
My velocity is complex! Strange...
This is related to inverse Fourier transform of F2, f2 but as a function of (t-T) and (t+T):
i(\frac{1}{\sqrt{2\pi}}) f_2(t-T) - i(\frac{1}{\sqrt{2\pi}}) f_2(t+T)
= i\frac{1}{\sqrt{2\pi}}[e^{-a|t-T|} - e^{-a|t+T|}]
To find the displacement, simply integrate the above with respect to t from -∞ to ∞.
s = i\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-a|t-T|} dt - i\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-a|t+T|} dt
= i\sqrt{\frac{2}{\pi a}}(e^{-aT} - e^{aT})
Again complex displacement.. (and negative)
Last edited: