What are your favorite web pages on SR?

  • Thread starter Thread starter Photon A
  • Start date Start date
  • Tags Tags
    Sr Web
Photon A
Messages
1
Reaction score
0
What are your favorite web pages on special relativity and why? I'm looking for exemplary pages that represent orthodoxy and excellence.

Thanks.

Photon A
 
Physics news on Phys.org
Last edited by a moderator:
Photon A said:
What are your favorite web pages on special relativity and why? I'm looking for exemplary pages that represent orthodoxy and excellence.

Thanks.

Photon A

The sci.physics.relativity FAQ is one of my favorite references - as it's name implies, it answers a lot of questions that are asked very frequently.

It, along with the general physics faq, can be found here

sci.physics.faq
 
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Abstract The gravitational-wave signal GW250114 was observed by the two LIGO detectors with a network matched-filter signal-to-noise ratio of 80. The signal was emitted by the coalescence of two black holes with near-equal masses ## m_1=33.6_{-0.8}^{+1.2} M_{⊙} ## and ## m_2=32.2_{-1. 3}^{+0.8} M_{⊙}##, and small spins ##\chi_{1,2}\leq 0.26 ## (90% credibility) and negligible eccentricity ##e⁢\leq 0.03.## Postmerger data excluding the peak region are consistent with the dominant quadrupolar...
Thread 'Dirac's integral for the energy-momentum of the gravitational field'
See Dirac's brief treatment of the energy-momentum pseudo-tensor in the attached picture. Dirac is presumably integrating eq. (31.2) over the 4D "hypercylinder" defined by ##T_1 \le x^0 \le T_2## and ##\mathbf{|x|} \le R##, where ##R## is sufficiently large to include all the matter-energy fields in the system. Then \begin{align} 0 &= \int_V \left[ ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g}\, \right]_{,\nu} d^4 x = \int_{\partial V} ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g} \, dS_\nu \nonumber\\ &= \left(...

Similar threads

Replies
28
Views
2K
Replies
10
Views
2K
Replies
14
Views
2K
Replies
4
Views
2K
Replies
19
Views
3K
Replies
33
Views
5K
Back
Top