Logarythmic
- 277
- 0
How can I identify the coordinate transformation that turns
ds^2 = \left(1+\frac{\epsilon}{1+c^2t^2}\right)^2c^2dt^2 - \left(\frac{\epsilon}{1+x^2}\right)^2x^2 - \left(\frac{\epsilon}{1+y^2}\right)^2y^2 - \left(\frac{\epsilon}{1+z^2}\right)^2z^2
into the Minkowski metric
ds^2 = c^2dt^2 - dx^2 - dy^2 - dz^2?
ds^2 = \left(1+\frac{\epsilon}{1+c^2t^2}\right)^2c^2dt^2 - \left(\frac{\epsilon}{1+x^2}\right)^2x^2 - \left(\frac{\epsilon}{1+y^2}\right)^2y^2 - \left(\frac{\epsilon}{1+z^2}\right)^2z^2
into the Minkowski metric
ds^2 = c^2dt^2 - dx^2 - dy^2 - dz^2?