What Determines the Center of Mass Movement in a Two-Object System Under Force?

AI Thread Summary
The discussion focuses on calculating the displacement of the center of mass for a two-object system consisting of an olive and a Brazil nut under applied forces. The initial positions and masses of both objects are provided, along with the forces acting on them. Participants suggest using unit vectors to represent initial positions and converting forces into accelerations for further calculations. Kinematic equations are recommended to determine the new positions after 4.6 seconds. The approach can also involve treating the system as a single entity to simplify the analysis.
sophzilla
Messages
20
Reaction score
0
A big olive (m = 0.11 kg) lies at the origin of an xy coordinate system, and a big Brazil nut (M = 0.82 kg) lies at the point (0.99, 2.1) m. At t = 0, a force Fo = (4i + 4j) N begins to act on the olive, and a force Fn = (-4i -3j) N begins to act on the nut. What is the (a)x and (b)y displacement of the center of mass of the olive-nut system at t = 4.6 s, with respect to its position at t = 0?

I first started approaching the problem by doing E(sigma)mixi/Emi, and the same for the y-direction. So, for x-direction, it would be:

(.99molive + 0mnut)/(.82kg + .11kg)

for the y-direction, it would be:

(2.1molive + 0mnut)/(.82kg + .11kg)

I don't even know if I did those correctly.

For the rest, they give you the force in both directions and the duration time (4.6 sec). I have to find the displaceent, which means I first have to find the center of mass for 0 seconds and then for 4.6 seconds.

Can someone help me with how to approach this problem? Thank you.
 
Physics news on Phys.org
I think you have got the nut and olive vectors mixed up. Here's the steps I would now take;

  1. Convert the intial positions into unit vectors (ai + bj)
  2. Convert the forces into accelerations
  3. Use kinematic equations to find the position vector of the nut and the olive
  4. Find the centre of mass

Alternatively, as Doc Al mentioned on the other thread, you could treat it a single system.

~H
 
Last edited:
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top