Hi dreamsfly,
I'm not sure what exactly you're asking because you're using somewhat unusual terminology, but let me take a crack at it. Simply put, a representation is labeled by the eigenvalues of some set of operators which all commute with each other.
The first representation you learn is called the x-representation, and in this representation the position operator is diagonal. In other words, the position operator X defined on the Hilbert space is represented simply as multiplication by the number x. Wavefunctions are functions of position. On the other hard, the momentum operator is represented in a complicated way in terms of a derivative in the x-representation. The basis states in the x-representation are states of definite position, although as your physical intuition tells you, this notion is somewhat contrived.
Alternatively, you can use the p-representation in which the momentum operator P is represented not as a derivative, but as multiplication by the number p. In this representation the position operator is now represented as a derivative with respect to p, and all wavefunctions are functions of p. As you may know, the x and p representations are connected by the Fourier transform. The basis states in this representation are states of definite momentum (again, these "states" are somewhat unphysical).
There are many different representations you could choose, but one of the most useful is the energy representation, that is, the representation in which the Hamiltonian is diagonal. Here your states are labeled by their energy. If the Hamiltonian is rotationally invariant, these states may also be labeled by definite values of L^2 and L_z. The basic example here would be the energy states of the Hydrogen atom labeled by n (energy eigenvalue E_n = - 13.6/n^2 eV), ell (L^2 eigenvalue ell(ell+1)hbar^2, and m (L_z eigenvalue m hbar).
Hope this helps!