OKay, so:
\psi (x) = B \sqrt{x}e^{-\beta x}
\psi (x)^* = B \sqrt{x}e^{-\beta x}
Thus:
P(x) = B \sqrt{x}e^{-\beta x}B sqrt{x}e^{-\beta x}
This gives:
P(x) = B^2 xe^{-2\beta x}
This is the right version as I have carefully copied it from the Question.
So now:
<x> = \int^{\infty}_{0} x P(x) dx
<x> = \int^{\infty}_{0} x B^2 xe^{-2\beta x} dx
<x> = B^2\int^{\infty}_{0} x^2 e^{-2\beta x} dx
Now:
f(x) = x^2, f'(x) = 2x
g'(x) = e^{-\beta x}, g(x) = -\frac{1}{\beta} e^{-\beta x}
Thus giving:
\frac{x^2}{\beta} - \int {-\frac{2x}{\beta}e^{-\beta x}}
Okay so taking parts again:
f(x) = 2x, f'(x) = 2
g'(x) = e^{-\beta x}, g(x) = -\frac{1}{\beta} e^{-\beta x}
Giving:
\frac{2x}{\beta} - \int{-\frac{2}{\beta}e^{- \beta x}}
Now then the integral now gives:
\frac{2}{\beta}\int{e^{-\beta x}}
which is:
-\beta x e^{-\beta x}
And put all together:
<x> = \frac{x^2}{\beta} + \frac{2}{\beta}[\frac{2x}{\beta} + \frac{2}{\beta}[-\beta e^{-\beta x}]]
Does this look okay?