What distinguishes the average and most likely position of a particle?

Click For Summary
SUMMARY

The discussion clarifies the distinction between the average position and the most likely position of a particle, particularly in the context of probability distributions. The average position is calculated using the integral <x> = ∫0 x P(x) dx, while the most likely position is determined by locating the maximum of the probability density function P(x). The participants also explored the specific probability density function P(x) = B^2 x e^{-βx}, emphasizing the importance of correctly identifying the wave function and its modulus square in quantum mechanics.

PREREQUISITES
  • Understanding of probability distributions in quantum mechanics
  • Familiarity with wave functions and their modulus square
  • Knowledge of integration techniques, particularly integration by parts
  • Basic concepts of statistical mechanics, including average and most probable values
NEXT STEPS
  • Study the derivation of the average position using <x> = ∫0 x P(x) dx in quantum mechanics
  • Learn about the significance of the most probable position in probability distributions
  • Explore the properties of the exponential function in relation to probability density functions
  • Investigate the error function and its applications in integrals involving Gaussian distributions
USEFUL FOR

Students and professionals in physics, particularly those focused on quantum mechanics, statistical mechanics, and mathematical physics. This discussion is beneficial for anyone seeking to understand the nuances between average and most likely positions of particles in probabilistic contexts.

  • #31


malawi_glenn said:
Anyway, OP do not need this integral anymore since we found a mistake on the way

Indeed! There is a big difference between a wavefunction and its probability distribution!:smile:
 
Physics news on Phys.org
  • #32


Okay, so:

\psi(x) = Bxe^{-\beta x}, \psi(x)^* = Bxe^{-\beta x}

Thus:

P(x) = B^2 x^2 e^{(-\beta x)^2}

Does this look better now?
 
  • #33


no.

what is e^x e^x ?
 
  • #34


TFM said:
Okay, so:

\psi(x) = Bxe^{-\beta x}, \psi(x)^* = Bxe^{-\beta x}

Thus:

P(x) = B^2 x^2 e^{(-\beta x)^2}

Does this look better now?

I thought \psi(x) was:

TFM said:
I am wondering if I made a mistake with the probability function, We was given the wave function:

\psi = B \sqrt{x}e^{-\beta x} for x \geq 0

Which is it?
 
  • #35


gabbagabbahey said:
I thought \psi(x) was:



Which is it?

Yeah, that is one more fundamental remark
 
  • #36


malawi_glenn said:
no.

what is e^x e^x ?

isn't it e^{x^2}

?
 
  • #37


TFM said:
isn't it e^{x^2}

?
why should i then ask?

with your logic:

x^1x^1 = x\cdot x = x^{1^1} = x

You should know this, algebra we learn when we are 15years old.
 
  • #38


I see now, when you multiply powers, they add up

So:

e^x * e^x = e^{2x}
 
  • #39


TFM said:
I see now, when you multiply powers, they add up

So:

e^x * e^x = e^{2x}


yup, and when you divide, you substract.

Now, after taking gabbagabbahey's remark into consideration, you can continue
 
  • #40


OKay, so:

\psi (x) = B \sqrt{x}e^{-\beta x}

\psi (x)^* = B \sqrt{x}e^{-\beta x}

Thus:

P(x) = B \sqrt{x}e^{-\beta x}B sqrt{x}e^{-\beta x}

This gives:

P(x) = B^2 xe^{-2\beta x}

This is the right version as I have carefully copied it from the Question.

So now:

&lt;x&gt; = \int^{\infty}_{0} x P(x) dx

&lt;x&gt; = \int^{\infty}_{0} x B^2 xe^{-2\beta x} dx

&lt;x&gt; = B^2\int^{\infty}_{0} x^2 e^{-2\beta x} dx

Now:

f(x) = x^2, f&#039;(x) = 2x

g&#039;(x) = e^{-\beta x}, g(x) = -\frac{1}{\beta} e^{-\beta x}

Thus giving:

\frac{x^2}{\beta} - \int {-\frac{2x}{\beta}e^{-\beta x}}

Okay so taking parts again:

f(x) = 2x, f&#039;(x) = 2

g&#039;(x) = e^{-\beta x}, g(x) = -\frac{1}{\beta} e^{-\beta x}

Giving:

\frac{2x}{\beta} - \int{-\frac{2}{\beta}e^{- \beta x}}

Now then the integral now gives:

\frac{2}{\beta}\int{e^{-\beta x}}

which is:

-\beta x e^{-\beta x}

And put all together:

&lt;x&gt; = \frac{x^2}{\beta} + \frac{2}{\beta}[\frac{2x}{\beta} + \frac{2}{\beta}[-\beta e^{-\beta x}]]

Does this look okay?
 
  • #41


TFM said:
OKay, so:

\psi (x) = B \sqrt{x}e^{-\beta x}

\psi (x)^* = B \sqrt{x}e^{-\beta x}

Thus:

P(x) = B \sqrt{x}e^{-\beta x}B sqrt{x}e^{-\beta x}

This gives:

P(x) = B^2 xe^{-2\beta x}

This is the right version as I have carefully copied it from the Question.

So now:

&lt;x&gt; = \int^{\infty}_{0} x P(x) dx

&lt;x&gt; = \int^{\infty}_{0} x B^2 xe^{-2\beta x} dx

&lt;x&gt; = B^2\int^{\infty}_{0} x^2 e^{-2\beta x} dx

Now:

f(x) = x^2, f&#039;(x) = 2x

g&#039;(x) = e^{-\beta x}, g(x) = -\frac{1}{\beta} e^{-\beta x}

Thus giving:

\frac{x^2}{\beta} - \int {-\frac{2x}{\beta}e^{-\beta x}}

Okay so taking parts again:

f(x) = 2x, f&#039;(x) = 2

g&#039;(x) = e^{-\beta x}, g(x) = -\frac{1}{\beta} e^{-\beta x}

Giving:

\frac{2x}{\beta} - \int{-\frac{2}{\beta}e^{- \beta x}}

Now then the integral now gives:

\frac{2}{\beta}\int{e^{-\beta x}}

which is:

-\beta x e^{-\beta x}

And put all together:

&lt;x&gt; = \frac{x^2}{\beta} + \frac{2}{\beta}[\frac{2x}{\beta} + \frac{2}{\beta}[-\beta e^{-\beta x}]]

Does this look okay?

No, you miss a factor e^-2x somewhere

and minus sign...

\frac{B^2}{4}(-2x(x+1)-1)e^{-2x}

You have worked hard, so I give you this one ;-)

I leave for you to insert the "betas" att correct places
 
Last edited:
  • #42


Hmm, how do we get an e^2x

?
 
  • #43


TFM said:
Hmm, how do we get an e^2x

?

you interprent me wrong

it should be beta included
 
Last edited:
  • #44


Okay, I see what has happened, I forgot the 2 part iof the exponential, and the B^2 taken out, so:

= B^2(\frac{x^2}{2\beta} + \frac{2}{1\beta}[\frac{2x}{1\beta} + \frac{2}{2\beta}[-2\beta e^{-2\beta x}]])

Does this look better?
 
  • #45


no ...

wrong wrong, start over again.

It is integration by parts two times, you could do it earlier, why not now?
 
  • #46


I cheated slightly and just stuck 2s in...

So properly this time:

P(x) = B^2 xe^{-2\beta x}

B^2\int^{\infty}_{0} x^2 e^{-2\beta x} dx

f(x) = x^2, f&#039;(x) = 2x

g&#039;(x) = e^{-2\beta x}, g(x) = -\frac{1}{2\beta}e^{-2\beta x}

Thus:

[-x^2\frac{1}{2\beta} - \int - 2x \frac{1}{2\beta}e^{-2\beta x}]

[-x^2\frac{1}{2\beta} + \frac{1}{2\beta} \int 2xe^{-2\beta x}]

Now:

f(x) = 2x, f&#039;(x) = 2

g&#039;(x) = e^{-2\beta x}, g(x) = -\frac{1}{2\beta}e^{-2\beta x}

[-2x\frac{1}{2\beta}e^{-2\beta x} - \int -2\frac{1}{2\beta}e^{-2\beta x}]

[-2x\frac{1}{2\beta}e^{-2\beta x} + \frac{2}{2 \beta} \int e^{-2\beta x}]

And now:

\int e^{-2\beta x} = -2\beta e^{-2\beta x}

Okay so far?
 
  • #47


TFM said:
I cheated slightly and just stuck 2s in...

So properly this time:

P(x) = B^2 xe^{-2\beta x}

B^2\int^{\infty}_{0} x^2 e^{-2\beta x} dx

f(x) = x^2, f&#039;(x) = 2x

g&#039;(x) = e^{-2\beta x}, g(x) = -\frac{1}{2\beta}e^{-2\beta x}

Thus:

[-x^2\frac{1}{2\beta} - \int - 2x \frac{1}{2\beta}e^{-2\beta x}]

[-x^2\frac{1}{2\beta} + \frac{1}{2\beta} \int 2xe^{-2\beta x}]

Now:

f(x) = 2x, f&#039;(x) = 2

g&#039;(x) = e^{-2\beta x}, g(x) = -\frac{1}{2\beta}e^{-2\beta x}

[-2x\frac{1}{2\beta}e^{-2\beta x} - \int -2\frac{1}{2\beta}e^{-2\beta x}]

[-2x\frac{1}{2\beta}e^{-2\beta x} + \frac{2}{2 \beta} \int e^{-2\beta x}]

And now:

\int e^{-2\beta x} = -2\beta e^{-2\beta x}

Okay so far?

<br /> \int e^{-2\beta x} = -2\beta e^{-2\beta x} <br />

is wrong

And also this one, why are you doing this wrong?

<br /> \int^{\infty}_{0} x^2 e^{-2\beta x} dx <br /> =<br /> [-x^2\frac{1}{2\beta} ]- \int - 2x \frac{1}{2\beta}e^{-2\beta x}<br />

You are forgetting the e^{-2\beta x} on the first term.
 
  • #48


OKay, let's try this step by step...

B^2 \int x^2 e^{-\beta x}

Using:

f(x) = x^2 and f&#039;(x) = 2x

and

g&#039;(x) = e^{-\beta x} and g(x) = \frac{1}{- \beta}e^{-\beta x}

So:

= B^2 \left[ -\frac{x^2}{\beta}e^{-\beta x} - \int -\frac{2x}{\beta}e^{-\beta x} \right]

= B^2 \left[ -\frac{x^2}{\beta}e^{-\beta x} + \frac{2x}{\beta}\int e^{-\beta x} \right]

Okay so far?
 
  • #49


No, the last line is wrong, 'x' should be inside the integral.
 
  • #50


Ah yes, I see that:

= B^2 \left[ -\frac{x^2}{\beta}e^{-\beta x} + \frac{2}{\beta}\int xe^{-\beta x} \right]

Okay so now, we have:

\int xe^{-\beta x}

So:

f(x) = x, f&#039;(x) = 1

g&#039;(x) = e^{-\beta x}, g(x) = -\frac{1}{\beta}e^{-\beta x}

So:

\left[-x\frac{1}{\beta}e^{-\beta x} - \int -\frac{1}{\beta}e^{-\beta x}

\left[-x\frac{1}{\beta}e^{-\beta x} + \frac{1}{\beta} \int e^{-\beta x}

Is this okay?
 
  • #51


yeah, but you have forgotten that the original exponential function was <br /> e^{-2\beta x}<br />
 
  • #52


Not again!

Okay so:

First One:

f(x) = x^2 and f&#039;(x) = 2x

g&#039;(x) = e^{-2\beta x} and g(x) = -\frac{1}{2 \beta}e^{-2\beta x}

Giving:

B^2 \left[-x^2\frac{1}{2 \beta}e^{-2\beta x} - \int -\frac{2x}{2\beta}e^{-2\beta x} \right]

B^2 \left[-x^2\frac{1}{2 \beta}e^{-2\beta x} + \frac{1}{\beta} \int xe^{-2\beta x} \right]

So now:

f(x) = x, f&#039;(x) = 1

g&#039;(x) = e^{-2\beta x} and g(x) = -\frac{1}{2 \beta}e^{-2\beta x}

Giving:

\left[-x\frac{1}{2 \beta}e^{-2\beta x} - \int \frac{1}{2 \beta}e^{-2\beta x}

\left[-\frac{x}{2 \beta}e^{-2\beta x} + \frac{1}{2 \beta} \int e^{-2\beta x}

Does this look better?
 
  • #53


yes, now just do the final integral, and but everything together and perform the limits.
Remember to keep track on those 'beta's, be careful.
 
  • #54


Okay so the integral of:

\int e^{-2\beta x} = -2 \beta e^{- 2 \beta x}

So if we put together, from the top:

B^2 \left[-x^2\frac{1}{2 \beta}e^{-2\beta x} + \frac{1}{\beta} \int xe^{-2\beta x} \right]

\left[-\frac{x}{2 \beta}e^{-2\beta x} + \frac{1}{2 \beta} \int e^{-2\beta x} \right]

\left[ -2 \beta e^{- 2 \beta x} \right]

So:

B^2 \left[-x^2\frac{1}{2 \beta}e^{-2\beta x} + \frac{1}{\beta} \left[-\frac{x}{2 \beta}e^{-2\beta x} + \frac{1}{2 \beta} \int e^{-2\beta x} \right] \right]

And:

B^2 \left[-\frac{x^2}{2 \beta}e^{-2\beta x} + \frac{1}{\beta} \left[-\frac{x}{2 \beta}e^{-2\beta x} + \frac{1}{2 \beta} \left[ -2 \beta e^{- 2 \beta x} \right] \right] \right]

One step at a time:

B^2 \left[-\frac{x^2}{2 \beta}e^{-2\beta x} + \frac{1}{\beta} \left[-\frac{x}{2 \beta}e^{-2\beta x} - \frac{2 \beta}{2 \beta}e^{- 2 \beta x} \right] \right]


B^2 \left[-\frac{x^2}{2 \beta}e^{-2\beta x} + \frac{1}{\beta} \left[-\frac{x}{2 \beta}e^{-2\beta x} - e^{- 2 \beta x} \right] \right]

And:

B^2 \left[ - \frac{x^2}{2\beta}e^{-2\beta x} - \frac{x}{2\beta^2}e^{- 2 \beta x} - \frac{1}{\beta}e^{-2 \beta x} \right]

Okay so far?
 
  • #55


<br /> \int e^{-2\beta x} = -2 \beta e^{- 2 \beta x} <br />

WRONG

it is not the first time you do this mistake
 
  • #56


Hmm, if we integrate e^kx, it becomes 1/k e^kx

So:

\left[ -\frac{1}{2 \beta} e^{- 2 \beta x} \right]

So:

B^2 \left[-\frac{x^2}{2 \beta}e^{-2\beta x} + \frac{1}{\beta} \left[-\frac{x}{2 \beta}e^{-2\beta x} + \frac{1}{2 \beta} \left[ -\frac{1}{2 \beta} e^{- 2 \beta x} \right] \right] \right]

goes to:

B^2 \left[-\frac{x^2}{2 \beta}e^{-2\beta x} + \frac{1}{\beta} \left[-\frac{x}{2 \beta}e^{-2\beta x} -\frac{1}{4 \beta} e^{- 2 \beta x} \right] \right]

B^2 \left[-\frac{x^2}{2\beta} - \frac{x}{2\beta^2}e^{-2\beta x} - \frac{1}{4\beta^3}e^{-2\beta x} \right]

Okay?
 
  • #57


bravo!

now, insert the limits
 
  • #58


Okay, so the limits were between infinity and 0, so:

B^2 \left[-\frac{x^2}{2\beta} - \frac{x}{2\beta^2}e^{-2\beta x} - \frac{1}{4\beta^3}e^{-2\beta x} \right]^{\infty}_0

so using the approximation e^-infinty = 0:

B^2 \left[\left(-\frac{\infty^2}{2\beta} - \frac{\infty}{2\beta^2}e^{-2\beta \infty} - \frac{1}{4\beta^3}e^{-2\beta \infty} \right) - \left( -\frac{0^2}{2\beta} - \frac{0}{2\beta^2}e^{-2\beta 0} - \frac{1}{4\beta^3}e^{-2\beta 0} \right) \right]

B^2 \left[\left(-\frac{\infty^2}{2\beta} \right) - \left(-\frac{1}{4\beta^3}e^{-2\beta 0} \right) \right]

e^0 = 1

B^2 \left[\left(-\frac{\infty^2}{2\beta} \right) - \left(-\frac{1}{4\beta^3} \right) \right]

So what do I do about the first fraction, with infinity squared on top?
 
  • #59


TFM said:
B^2 \left[-\frac{x^2}{2 \beta}e^{-2\beta x} + \frac{1}{\beta} \left[-\frac{x}{2 \beta}e^{-2\beta x} -\frac{1}{4 \beta} e^{- 2 \beta x} \right] \right]

B^2 \left[-\frac{x^2}{2\beta} - \frac{x}{2\beta^2}e^{-2\beta x} - \frac{1}{4\beta^3}e^{-2\beta x} \right]

Okay?

You've dropped a factor of e^{-2\beta x} from the first term in going from one line to the other. This is why you are getting infinity when you plug in the limits.
 
  • #60


oh I didn't see that, you made that mistake AGAIN! What is 'wrong'? You still had it in the next last line in post #56, why did you remove it?

And one more thing e^x x-> infty IS 0, not just approximate.This guy is correct (next last line in post #56)

<br /> B^2 \left[-\frac{x^2}{2 \beta}e^{-2\beta x} + \frac{1}{\beta} \left[-\frac{x}{2 \beta}e^{-2\beta x} -\frac{1}{4 \beta} e^{- 2 \beta x} \right] \right] <br />

but not this one:
<br /> B^2 \left[-\frac{x^2}{2\beta} - \frac{x}{2\beta^2}e^{-2\beta x} - \frac{1}{4\beta^3}e^{-2\beta x} \right] <br />

Be more careful in the future...
 

Similar threads

Replies
14
Views
3K
  • · Replies 12 ·
Replies
12
Views
850
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K