What do we call the function in this diagram?

  • Thread starter Thread starter navigator
  • Start date Start date
  • Tags Tags
    Diagram Function
navigator
Messages
42
Reaction score
0
We call the function f' in this diagrams:

\begin{displaymath}<br /> \begin{xy}<br /> *!C\xybox{<br /> \xymatrix{<br /> {E}\ar[r]^{i} \ar[d]_{f} &amp; {X} \ar[dl]^{f&#039;}\\<br /> {Y} &amp;}}<br /> \end{xy}<br /> \end{displaymath}<br />
the entension of function f;
(i is an inclusion map)

\begin{displaymath}<br /> \begin{xy}<br /> *!C\xybox{<br /> \xymatrix{<br /> {E}\ar[r]^{i} \ar[dr]_{f&#039;} &amp; {X} \ar[d]^{f}\\<br /> &amp;{Y} }}<br /> \end{xy}<br /> \end{displaymath}<br />
the restriction of function f;
(i is an inclusion map)

\begin{displaymath}<br /> \begin{xy}<br /> *!C\xybox{<br /> \xymatrix{<br /> &amp;{E}\ar[d]^{p}\\<br /> {X}\ar[ur]^{f&#039;}\ar[r]_{f} &amp; {Y} } }<br /> \end{xy}<br /> \end{displaymath}<br />
the lifting of function f;

then how do we call the function f' in this this diagram:
\begin{displaymath}<br /> \begin{xy}<br /> *!C\xybox{<br /> \xymatrix{<br /> {X}\ar[r]^{f}\ar[rd]_{f&#039;} &amp; {Y} \ar[d]^{p}\\<br /> &amp;{E} } }<br /> \end{xy}<br /> \end{displaymath}<br />
 
Physics news on Phys.org
Oh,the latex codes do not display properly here.
So my question is what is the inverse of lifting? like restriction is the inverse of extension.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...

Similar threads

Back
Top