What Does $$E^2_k|_{k=k_{res}}$$ Mean?

  • Thread starter Thread starter NODARman
  • Start date Start date
  • Tags Tags
    Physic Symbol
NODARman
Messages
57
Reaction score
13
Homework Statement
.
Relevant Equations
.
Hi, just wondering what this thing means.
$$
E^2_k|_{k=k_{res}}
$$
Just the k=k(res) after the vertical line. There is no definition in the textbook but in math does that mean from K=K(res) to something that can be dependent on a function or a situation?

Like definite integrals answer $$x|^3_2=3-2=1$$
 
Physics news on Phys.org
NODARman said:
Homework Statement:: .
Relevant Equations:: .

Hi, just wondering what this thing means.
$$
E^2_k|_{k=k_{res}}
$$
Just the k=k(res) after the vertical line. There is no definition in the textbook but in math does that mean from K=K(res) to something that can be dependent on a function or a situation?

Like definite integrals answer $$x|^3_2=3-2=1$$
Without additional context it's hard to say. However, I don't think it's like a definite integral. Can you post a clear picture of the textbook page where this appears?
 
$$
\left(\begin{array}{c}
D_{\psi \psi} \\
D_{\psi p}=D_{p \psi} \\
D_{p p}
\end{array}\right)=\left(\begin{array}{c}
\left.D \frac{\delta}{\gamma^2} E_k^2\right|_{k=k_{\text {res }}} \\
-\left.D \frac{\psi m c}{\gamma} E_k^2\right|_{k=k_{\text {res }}} \\
\left.D \frac{\psi^2 m^2 c^2}{\delta} E_k^2\right|_{k=k_{\text {res }}}
\end{array}\right),
\space where \space
E_k^2=\hbar \omega(k) n(k)=\int \frac{k^2 d \Omega}{(2 \pi)^2} \hbar \omega(\mathbf{k}) n(\mathbf{k})
$$
is energy density per unit of a one-dimensional wave vector and we assumed that ω(k) is an isotropic function of k.
we know that k is a wave vector (and the index "res" could be a doppler resonance for short) but what does it mean in that context (with E^2)?

This is from synchrotron radiation texbook.
Mark44 said:
Without additional context it's hard to say. However, I don't think it's like a definite integral. Can you post a clear picture of the textbook page where this appears?
I'll try to find the book.
 
NODARman said:
Hi, just wondering what this thing means.
$$
E^2_k|_{k=k_{res}}
$$
It means ##E^2_k## evaluated at ##k=k_{res}##.
 
  • Like
Likes Grelbr42, PhDeezNutz, PeroK and 1 other person
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top