What Does $$E^2_k|_{k=k_{res}}$$ Mean?

  • Thread starter Thread starter NODARman
  • Start date Start date
  • Tags Tags
    Physic Symbol
Click For Summary
SUMMARY

The expression $$E^2_k|_{k=k_{res}}$$ represents the evaluation of the energy density per unit of a one-dimensional wave vector at the resonance wave vector $$k_{res}$$. This notation is commonly used in mathematical physics, particularly in contexts involving wave vectors and energy density calculations. The discussion clarifies that this expression is not analogous to a definite integral, but rather signifies a specific evaluation point for the function $$E^2_k$$.

PREREQUISITES
  • Understanding of wave vectors in physics
  • Familiarity with energy density concepts in quantum mechanics
  • Knowledge of mathematical notation used in physics
  • Basic principles of synchrotron radiation
NEXT STEPS
  • Research the properties of wave vectors in quantum mechanics
  • Study energy density calculations in synchrotron radiation
  • Learn about the significance of resonance in wave phenomena
  • Explore mathematical notation and its applications in physics
USEFUL FOR

Physicists, students studying quantum mechanics, and researchers working with synchrotron radiation who seek to understand the implications of wave vector evaluations in energy density calculations.

NODARman
Messages
57
Reaction score
13
Homework Statement
.
Relevant Equations
.
Hi, just wondering what this thing means.
$$
E^2_k|_{k=k_{res}}
$$
Just the k=k(res) after the vertical line. There is no definition in the textbook but in math does that mean from K=K(res) to something that can be dependent on a function or a situation?

Like definite integrals answer $$x|^3_2=3-2=1$$
 
Physics news on Phys.org
NODARman said:
Homework Statement:: .
Relevant Equations:: .

Hi, just wondering what this thing means.
$$
E^2_k|_{k=k_{res}}
$$
Just the k=k(res) after the vertical line. There is no definition in the textbook but in math does that mean from K=K(res) to something that can be dependent on a function or a situation?

Like definite integrals answer $$x|^3_2=3-2=1$$
Without additional context it's hard to say. However, I don't think it's like a definite integral. Can you post a clear picture of the textbook page where this appears?
 
$$
\left(\begin{array}{c}
D_{\psi \psi} \\
D_{\psi p}=D_{p \psi} \\
D_{p p}
\end{array}\right)=\left(\begin{array}{c}
\left.D \frac{\delta}{\gamma^2} E_k^2\right|_{k=k_{\text {res }}} \\
-\left.D \frac{\psi m c}{\gamma} E_k^2\right|_{k=k_{\text {res }}} \\
\left.D \frac{\psi^2 m^2 c^2}{\delta} E_k^2\right|_{k=k_{\text {res }}}
\end{array}\right),
\space where \space
E_k^2=\hbar \omega(k) n(k)=\int \frac{k^2 d \Omega}{(2 \pi)^2} \hbar \omega(\mathbf{k}) n(\mathbf{k})
$$
is energy density per unit of a one-dimensional wave vector and we assumed that ω(k) is an isotropic function of k.
we know that k is a wave vector (and the index "res" could be a doppler resonance for short) but what does it mean in that context (with E^2)?

This is from synchrotron radiation texbook.
Mark44 said:
Without additional context it's hard to say. However, I don't think it's like a definite integral. Can you post a clear picture of the textbook page where this appears?
I'll try to find the book.
 
  • Haha
Likes   Reactions: PeroK
NODARman said:
Hi, just wondering what this thing means.
$$
E^2_k|_{k=k_{res}}
$$
It means ##E^2_k## evaluated at ##k=k_{res}##.
 
  • Like
Likes   Reactions: Grelbr42, PhDeezNutz, PeroK and 1 other person

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 0 ·
Replies
0
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
11
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K