Thank you for your patience. I think that I'm finally getting the idea.
Actually the inside of the cylinder (s<R) is empty. It's just filled with the color for a purpose of another task.
Back to problem, in s=0 there should be no singularity. Therefore I can write:
V_{in}(s,\phi) = \sum_{k = 0}^{+\infty} s^k (a_k \cos k \phi + b_k \sin k \phi)
If I now scale both coefficients as it follows: \alpha_k = a_k R^k / V_0 , \beta_k = b /( V_0 R^k), than:
V_{in}(R, \phi) = V_0 \sum_{k = 0}^{+\infty} (\alpha_k \cos k \phi + \beta_k \sin k \phi) = \begin{cases} V_0 & \phi \in (0,\pi)\\ -V_0 & \phi \in (\pi,2\pi)\end{cases}
So I see here a Fourier series and I can compute necessary coefficients.
\alpha_k \equiv 0 due to the fact that the function is odd and:
\beta_k = \frac{2 (1- (-1)^k)}{k \pi} therefore:
V_{in} (s,\phi) = V_0 \sum_{k = 0}^{+\infty} \left( \frac{s}{R} \right)^k \frac{2 (1- (-1)^k)}{k \pi} \sin k \phi
That's of course the case when s<R, for s>R the series contains only of negatives powers of s but the reasoning is the same, I believe. So:
V_{out} (s, \phi) = V_0 \sum_{k = 0}^{+\infty} \left( \frac{R}{s} \right)^k \frac{2 (1- (-1)^k)}{k \pi} \sin k \phi
Now I try to see how the charge is distributed. I compute two derivatives:
\frac{\partial V_{in}}{\partial r} = V_0 \sum_{k = 1}^{+\infty} \left( \frac{s}{R} \right)^{k-1} \frac{2 (1- (-1)^k)}{ \pi R} \sin k \phi = V_0 \sum_{k = 0}^{+\infty} \left( \frac{s}{R} \right)^{k} \frac{2 (1- (-1)^{k+1})}{ \pi} \sin [(k+1) \phi]
\frac{\partial V_{out}}{\partial r} = - V_0 R \sum_{k = 0}^{+\infty} \frac{R^k}{s^{k+2}} \frac{2 (1- (-1)^{k+1})}{ \pi } \sin [(k+1) \phi]
Finally:
\sigma = -V_0 R \sum_{k = 0}^{+\infty} \frac{R^k}{s^{k+2}} \frac{2 (1- (-1)^{k+1})}{ \pi } \sin [(k+1) \phi] - V_0 \sum_{k = 0}^{+\infty} \left( \frac{s}{R} \right)^{k} \frac{2 (1- (-1)^{k+1})}{ \pi R} \sin [(k+1) \phi]
\sigma = -V_0 \sum_{k = 0}^{+\infty} \left( \frac{R^{k+1}}{s^{k+2}} + \frac{s^k}{R^{k+1}} \right) \frac{2 (1- (-1)^{k+1})}{ \pi } \sin [(k+1) \phi]
But charge is only distributed on the cylinder for which s=R, so in fact:
\sigma(R,\phi) = - \frac{2V_0}{\pi R} \sum_{k = 0}^{+\infty} \frac{2 (1- (-1)^{k+1})}{ \pi } \sin [(k+1) \phi]
I'm a bit confused because this series doesn't seem to converge for any value of angle.