dx said:
There's nothing quantum mechanical about the Dirac delta. Its just a piece of mathematics. It could have been introduced before we knew anything about quantum mechanics.
You are absolutely right. The Dirac delta function simply reflects the way values are distributed in a perfect manufacturing process, at least when expressed as a gaussian dirac delta function. And as seen in the math below, one might think that quantum mechanics would have arisen out of simply wondering if anything in nature was a perfect process.
The sifting property of the Dirac delta is
\int_{ - \infty }^{ + \infty } {f({x_1})\delta ({x_1} - {x_0})d{x_1}} = f({x_0})
And if we let f({x_1}) = \delta (x - {x_1}) in the above we get,
\int_{ - \infty }^\infty {\delta (x - {x_1})\delta ({x_1} - {x_0})d{x_1}} = \delta (x - {x_0})This is shown on the wikipedia.org site
here, just before the composition section.
And when this process is iterated again, we get
\int_{ - \infty }^\infty {\int_{ - \infty }^\infty {\delta (x - {x_2})\delta ({x_2} - {x_1})\delta ({x_1} - {x_0})d{x_1}} d{x_2} = } \int_{ - \infty }^\infty {\delta (x - {x_2})\delta ({x_2} - {x_0})d{x_2}} = \delta (x - {x_0})
Iterating this process an infinite number of times gives us,
\int_{ - \infty }^{ + \infty } {\int_{ - \infty }^{ + \infty } { \cdot \cdot \cdot \int_{ - \infty }^{ + \infty } {\delta (x - {x_n})\delta ({x_n} - {x_{n - 1}}) \cdot \cdot \cdot \delta ({x_1} - {x_0})} } } d{x_n}d{x_{n - 1}} \cdot \cdot \cdot d{x_1} = \delta (x - {x_0})This is explicitly written out in Prof. Hagen Kleinert's book, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, page 91, and other books as well.
If the second integral above is at least temporarily treated like a regular function, then it becomes a Chapman-Kolmogorov equation whose solution is a gaussian distribution as found
here, for example.
So if we use the gaussian form of the Dirac delta function,
{\rm{\delta (}}{{\rm{x}}_1}{\rm{ - }}{{\rm{x}}_0}) = \mathop {\lim }\limits_{\Delta \to 0} \frac{1}{{{{(\pi {\Delta ^2})}^{1/2}}}}{e^{ - {{({x_1} - {x_0})}^2}/{\Delta ^2}}}
with
{\Delta ^2} = \frac{{2i\hbar }}{m}({t_1} - {t_0})
the dirac deltas become
\delta ({x_1} - {x_0}) = \mathop {\lim }\limits_{{t_1} \to {t_0}} {\left[ {\frac{m}{{2\pi i\hbar ({t_1} - {t_0})}}} \right]^{1/2}}\exp \left[ {\frac{{-im{{({x_1} - {x_0})}^2}}}{{2\hbar ({t_1} - {t_0})}}} \right]
which can be manipulated to
\delta ({x_1} - {x_0}) = \mathop {\lim }\limits_{{t_1} \to {t_0}} {\left[ {\frac{m}{{2\pi i\hbar ({t_1} - {t_0})}}} \right]^{1/2}}\exp \left[ {\frac{{-im}}{{2\hbar }}{{(\frac{{{x_1} - {x_0}}}{{{t_1} - {t_0}}})}^2}({t_1} - {t_0})} \right] = \mathop {\lim }\limits_{\Delta {t_{1,0}} \to 0} {\left[ {\frac{m}{{2\pi i\hbar \Delta {t_{1,0}}}}} \right]^{1/2}}\exp \left[ {\frac{{-im}}{{2\hbar }}{{(\frac{{\Delta {x_{1,0}}}}{{\Delta {t_{1,0}}}})}^2}\Delta {t_{1,0}}} \right]
or,
\delta ({x_1} - {x_0}) = \mathop {\lim }\limits_{\Delta {t_{1,0}} \to 0} {(\frac{m}{{2\pi i\hbar \Delta {t_{1,0}}}})^{1/2}}{e^{\frac{{-im}}{{2\hbar }}{{({{\dot x}_{1,0}})}^2}\Delta {t_{1,0}}}}
When this is substituted for each of the dirac deltas in the above we get
\int_{ - \infty }^{ + \infty } {\int_{ - \infty }^{ + \infty } { \cdot \cdot \cdot \int_{ - \infty }^{ + \infty } {{{(\frac{m}{{2\pi i\hbar \Delta {t_{,n}}}})}^{1/2}}{e^{\frac{{-im}}{{2\hbar }}{{({{\dot x}_{,n}})}^2}\Delta {t_{,n}}}}{{(\frac{m}{{2\pi i\hbar \Delta {t_{n,n - 1}}}})}^{1/2}}{e^{\frac{{-im}}{{2\hbar }}{{({{\dot x}_{n,n - 1}})}^2}\Delta {t_{n,n - 1}}}} \cdot \cdot \cdot {{(\frac{m}{{2\pi i\hbar \Delta {t_{1,0}}}})}^{1/2}}{e^{\frac{{-im}}{{2\hbar }}{{({{\dot x}_{1,0}})}^2}\Delta {t_{1,0}}}}} } } d{x_n}d{x_{n - 1}} \cdot \cdot \cdot d{x_1}
with the appropriate limits implied.
Then since the exponents add up, the above becomes
\int_{ - \infty }^{ + \infty } {\int_{ - \infty }^{ + \infty } { \cdot \cdot \cdot \int_{ - \infty }^{ + \infty } {{{(\frac{m}{{2\pi i\hbar \Delta t}})}^{n/2}}{e^{\,\,{\textstyle{-i \over \hbar }}\int_0^t {\frac{m}{2}{{(\dot x)}^2}dt} }}} } } d{x_n}d{x_{n - 1}} \cdot \cdot \cdot d{x_1}
Which is Feynman's path integral for a free particle. So we see that there is a very easy connection between the dirac delta function and quantum mechanics. I'm not sure yet how to include potentials in the lagrangian.