What Does the Matrix A Represent in Manifold Gradient Calculations?

  • Thread starter Thread starter Asuralm
  • Start date Start date
  • Tags Tags
    Gradient Manifold
Asuralm
Messages
35
Reaction score
0
Hi all:

I have just met a problem. If say there is a triangle ijk on a manifold, D(i), D(j), D(k) are the geodesic distances from a far point to i,j,k respectively. Then g = [D(i) - D(k); D(j) - D(k)], what does g describe? Does is describe the gradient of the vertex k?

If u = Vi-Vk, v = Vj-Vk where Vi, Vj, Vk are the coordinate vector in 3D, construct a matrix A = [u v], then let A = (A' * A) ^ (-1). Now A is a 2*2 matrix and what does A mean?

Finally, let g = A * g, what's the meaning of this then?

The context of this is in someone's programming code of computing the local gradient. Can someone help me please?

Thanks
 
Mathematics news on Phys.org
Sorry the first post was failed.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top