What Force is Needed to Pull a Solenoid in a Magnetic Field?

  • Thread starter Thread starter Crotos
  • Start date Start date
  • Tags Tags
    Force
Crotos
Messages
2
Reaction score
0

Homework Statement


Two solenoids are placed in a cartesian xy-coordinate manner with their bottoms pointing in the negative y-direction, and their tops pointing in the positive y-direction. The solenoids are placed a distance x from each other (on the x-axis).

The solenoids are identical, each having length L, diameter d, N turns, resistance R and negligible self-inductance L.

The left-most solenoid has current I running through it.

Find the force, as a function of distance x between the solenoids, that is required to pull the right-most solenoid away from the left, with a constant velocity.


Homework Equations


I am not sure.

The Attempt at a Solution


My understanding is that the left-most solenoid having current running through it will produce a magnetic field, drawing the right-most solenoid towards it. I'm looking for a force that exceeds this magnetic force in magnitude, in order to get the solenoid moving in the +x-direction.

It makes sense to me that the force needed should be less for increasing distance from the left-most solenoid, since the magnetic field from it is weaker when moving away from it.

However, I can't seem to find a good expression for the magnetic field, radially outward from the left-most solenoid. All I find on the internet is some crazy formula containing "elliptical integrals of 1st and 2nd order"..

I'm starting to think I'm looking at the problem the wrong way.

Help! =)
 
Physics news on Phys.org
Hint: think induction.
 
Simon Bridge said:
Hint: think induction.

Hi Simon and thank you for your reply! I gave your hint a shot, and this is what I came up with:

Since the coil is of N turns, the induced emf in the coil running current through it should be given by
ε = -N(dø/dt).​

ε is also given by Ohm's law, ε = IR, meaning
IR = -N(dø/dt) ⇔ dB/dt = -IR/(NA)​
since the cross-sectional area of the coil is constant I took it out of the derivative. To clarify, A is the cross-sectional area I'm talking about,
A = (d/2)2π → dB/dt = -IR/(N(d/2)2π).​

From this I think it's pretty fair to say that dB/dt is constantly decreasing, meaning B(t) is decreasing linearly.

Is this decrease along the symmetry axis of the solenoid though, or is it actually appliable to the radial axis, the axis I think I'm looking to get the B-field for?

How does this help me in terms of finding the force required to push the right-most solenoid away from the left-most? I don't see the connection force-induction.
 
Sketch the situation... How would you normally treat that?
I'd try either treating as two magnets or use work-energy.
You are right... You need the radial field or some approx. I'm thinking you have a set of notes to deal with that.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top