What Happens to a Spacecraft's Synodic Period as Its Orbit Approaches 1 AU?

  • Thread starter Thread starter wiremonkey22
  • Start date Start date
  • Tags Tags
    Period
AI Thread Summary
As a spacecraft's orbit approaches 1 AU from the Sun, its synodic period increases due to the diminishing difference in orbital speeds between it and Earth. The calculations for synodic periods become less reliable as the spacecraft's distance nears that of Earth's orbit, leading to longer times for the spacecraft to "lap" Earth. This phenomenon occurs because the orbital periods of the two bodies converge, resulting in a minimal speed differential. Understanding the concept of synodic period clarifies why the return to the same angular position takes longer as the orbits align. The discussion concludes that as the spacecraft's orbit approaches 1 AU, the synodic period indeed increases.
wiremonkey22
Messages
2
Reaction score
0

Homework Statement


If we were to put a spacecraft into orbit around the Sun at a distance of 0.900 au and then gradually increase the orbital distance closer and closer to 1 au, what would happen to the synodic period of the spacecraft ? Why does this happen?

Homework Equations


1/S = 1/P - 1/E & P2 = a3

The Attempt at a Solution


I get the correct answer when i calculate the known planets, mercury, venus, mars... but my hypothetical planets (orbiting the Sun) are just shy of 1au and just beyond 1au. example planet D (a=0.999) with this formula i get 665.833...(calculating in years) using this 1/s = 1/.9985-1/1. .9985 is what i got with P2 = a3. However when i replace 1/e (earth) with 365.26 and convert that to years it seems reasonable, being 1.001. One explanation has this statement "taking the limit of S as P approaches 1 AU", i just can't seem to find an explanation anywhere on the web. Does this formula break down closer to 1 because we use the Earth as a reference, or am i just using it incorrectly. Please tell me if this is confusing and i will try to explain it better. Thank you!
 
Physics news on Phys.org
As the orbit of your planet gets closer to that of the Earth, their orbital periods approach one another. That is to say, the difference in speed of the two approaches zero. How long would it take one object to "lap" the other when the differential speed is nearly nil?
 
Thank you, i think i got it, it helped to understand what synodic period was first instead of just plugging in numbers, once i figured out that the speed would be roughly the same it would take longer for it to return to the same angular position. Am i right here?
 
Yes.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top