If the EM field is static, like around a stationary electric charge, then it's definitely not something you'd call a "wave". And a time-evolving EM field can be seen either as a single object or several sine-form waves of different wavelengths added together. That allows determination of the spectrum of EM radiation, i.e. how much of each wavelength is contained in the field measured by some device. This doesn't have anything to do with quantum mechanics, yet.
The term "wave function" is a bit misleading, because the time-dependent Schrödinger equation is not an actual wave equation like that describing the propagation of an EM wave in vacuum. Its solutions just have some wave-like properties because it's a diffusion equation with complex multipliers.