autre
- 116
- 0
Homework Statement
Prove:
Let V be a vector space over the field F . If A,B,C\in L(V) , then A\circ(B+C)=A\circ B+A\circ C .
The Attempt at a Solution
Note that A\circ B\in L(V) means A\circ B(\mathbf{v})=A(B(\mathbf{v})). Suppose (\alpha_{jk})_{j,k=1}^{n} and (\beta_{jk})_{j,k=1}^{n} are matrices of A and B and (\gamma_{jk})_{j,k=1}^{n} is a matrix of C . Then, B+C=(\beta_{jk}+\gamma_{jk})_{j,k=1}^{n} and A\circ(B+C)=A((B+C))=\sum_{i=1}^{n}\alpha_{ji}(\beta_{ik}+\gamma_{ik})...
I'm a little stuck at this point. Any ideas?