What is the braking force required to stop an egg from falling?

  • Thread starter Thread starter Mvb
  • Start date Start date
  • Tags Tags
    Braking Force
AI Thread Summary
To calculate the braking force required to stop an egg falling from a height, first determine its final velocity just before impact, which is influenced by the acceleration due to gravity. The egg, with a mass of 20 g, strikes the ground and comes to a halt over a distance of 1 mm. The appropriate kinematic equation to use is v_f^2 = v_i^2 + 2ad, which allows for the calculation of acceleration without needing time. Once the acceleration is found, apply Newton's second law (F = ma) to determine the braking force. This approach simplifies the problem and avoids unnecessary complexity.
Mvb
Messages
5
Reaction score
0
Hello
I am having some trouble solving a problem related to braking forces. The assignment is this:

A birdwatcher sees an egg falling from a 20 m tall tree. (Though the 20 m might not have anything to do with this particular task because it is part of a longer question).
The egg strikes the ground and is brought to a stop in a distance of 1 mm. Assuming a mass of 20 g for the egg calculate the force required. (You may assume a constant braking force. Use g = 10 m/s^2)

I was going to calculate the eggs force (F = 0,02 kg * 10 m/s^2 = 0,2 N)
Because in order for the egg to become stationary, the forces on it must be equal in magnitude and have opposite directions (and this is the force on the egg towards the earth).

I am not sure what to do about the 1 mm though?

Thanks for your help
 
Physics news on Phys.org
Hi Mvb, welcome to Physics Forums.

Please try to follow the posting template when you start a homework thread :smile:

The 10 m/s^2 acceleration alone applies as the egg is falling, causing the egg to speed up as it falls. It will have some final velocity just before it contacts the ground.

After it makes contact with the ground you're told that it comes to a halt in a distance of 1mm. So that means it goes from that final velocity to zero in that short distance. That represents a different acceleration rate which applies over that distance.
 
Thank you, and I'll do that the next time.

I understand that I am supposed to find the acceleration that makes the egg go from 20 m/s to 0 m/s in 1 mm, but I'm not sure how to do that?

I graphed it and was thinking to find the acceleration like this:

a = (0 m/s - 20 m/s) / Δt
0.001 m = 1/2 * a * t^2 + 20 m/s * t

And solve.
But I'm not supposed to use a calculator and it seems unlikely that it is that complicated.
 
Mvb said:
Thank you, and I'll do that the next time.

I understand that I am supposed to find the acceleration that makes the egg go from 20 m/s to 0 m/s in 1 mm, but I'm not sure how to do that?

I graphed it and was thinking to find the acceleration like this:

a = (0 m/s - 20 m/s) / Δt
0.001 m = 1/2 * a * t^2 + 20 m/s * t

And solve.
But I'm not supposed to use a calculator and it seems unlikely that it is that complicated.

There's another kinematic formula involving acceleration and velocities (initial and final) that involves distance rather than time. It would be the easier route to go. For a body undergoing acceleration from an initial velocity vi to a final velocity vf over distance d,
v_f^2 = v_i^2 + 2 a d
 
Thank you very much, that was really helpful :)
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top