I do not understand what's the statement of this movie. I've also found the same as a text, and it doesn't help any further for me too. I'm pretty sure that it should be explainable in terms of classical electrodynamics. I'd start with a calculation for DC. What one has to do is to solve the magnetostatic equations. Since we have a moving body, one should use the full relativistic equations to be sure to get all effects right. You can make approximations that the velocities involved are small compared to ##c## anyway, if it helps to solve the equations. So we have
$$\vec{\nabla} \times \vec{E}=0, \quad \vec{\nabla} \cdot \vec{E}=\rho, \quad \vec{\nabla} \times \vec{B}=\frac{1}{c} \vec{j}, \quad \vec{\nabla} \cdot \vec{B}=0, \quad \vec{j}=\sigma \gamma (\vec{E}+\frac{1}{c} \vec{v} \times \vec{B}),$$
where ##\vec{v}## is the velocity of the conduction electrons and ##\gamma=(1-\vec{v}^2/c^2)^{-1/2}##. The latter you can approximate by ##1## I guess. Most likely it's even justified to use the non-relativistic constituent equation (aka Ohm's Law)
$$\vec{j} \simeq \sigma \vec{E}.$$
This neglects the Hall effect due to the magnetic field, which is negligable with high accuracy for usual "household currents" as here. Then one can also make the approximation ##\rho=0##, i.e., neglect the charge density built up due to the Hall effect, which is also usual in treating magnetostatic problems with conductors carrying "household currents".
I've not done the calculation (perhaps I find the time over the weekend), but I'd start with an ansatz
$$\vec{j}=j_{\parallel} \vec{e}_z+\rho \omega \vec{e}_z \times \vec{x}.$$
The first term is due to the applied electric field to get the usual conduction current, the second is the term from the rotation of the conductor around its axis. The magnetic field should be ##\vec{B}=B_\phi \vec{e}_{\phi}+B_z \vec{e}_z## (in usual cylindrical coordinates ##(r,\vartheta,z)##). That's a guess. As I said, I've to carefully check, whether this idea works out.
For the AC case, it should be safe to use the quasistatic approximation, i.e., to neglect the displacement current, but one has to use Faraday's Law
$$\vec{\nabla} \times \vec{E}=-\frac{1}{c} \partial_t \vec{B}.$$