What is the closed form for the series S?

kelly0303
Messages
573
Reaction score
33

Homework Statement


I have the Lagrangian $$L=-\frac{1}{2}\phi\Box \phi-\frac{1}{2}m^2\phi^2$$ and I need to show that the propagator in the momentum space I obtain using this lagrangian (considering no interaction) is the same as if I consider the free Lagrangian to be $$L_{free}=-\frac{1}{2}\phi\Box \phi$$ and treat the mass term as an interaction $$L_{int}= -\frac{1}{2}m^2\phi^2$$

Homework Equations

The Attempt at a Solution


So in the normal case the propagator for a mass m scalar particle is $$\frac{i}{p^2-m^2+i\epsilon}$$. For the other approach I get that the propagator looks like this: $$\frac{1}{p^2+i\epsilon}-im^2(\frac{1}{p^2+i\epsilon})^2-m^4(\frac{1}{p^2+i\epsilon})^3+im^6(\frac{1}{p^2+i\epsilon})^4+...$$ But i am not sure how to show they are equal. Can someone help me?
 
Physics news on Phys.org
kelly0303 said:

Homework Statement


I have the Lagrangian $$L=-\frac{1}{2}\phi\Box \phi-\frac{1}{2}m^2\phi^2$$ and I need to show that the propagator in the momentum space I obtain using this lagrangian (considering no interaction) is the same as if I consider the free Lagrangian to be $$L_{free}=-\frac{1}{2}\phi\Box \phi$$ and treat the mass term as an interaction $$L_{int}= -\frac{1}{2}m^2\phi^2$$

Homework Equations

The Attempt at a Solution


So in the normal case the propagator for a mass m scalar particle is $$\frac{i}{p^2-m^2+i\epsilon}$$. For the other approach I get that the propagator looks like this: $$\frac{1}{p^2+i\epsilon}-im^2(\frac{1}{p^2+i\epsilon})^2-m^4(\frac{1}{p^2+i\epsilon})^3+im^6(\frac{1}{p^2+i\epsilon})^4+...$$ But i am not sure how to show they are equal. Can someone help me?
It is a geometric series. Alternatively, you can see this as the Taylor expansion around ##m^2=0## of what expression?
 
nrqed said:
It is a geometric series. Alternatively, you can see this as the Taylor expansion around ##m^2=0## of what expression?
Thank you for this so I have: $$\frac{1}{p^2+i\epsilon}-im^2(\frac{1}{p^2+i\epsilon})^2-m^4(\frac{1}{p^2+i\epsilon})^3+im^6(\frac{1}{p^2+i\epsilon})^4+...$$ $$\frac{1}{p^2+i\epsilon}(1-im^2\frac{1}{p^2+i\epsilon}-m^4(\frac{1}{p^2+i\epsilon})^2+im^6(\frac{1}{p^2+i\epsilon})^3+...)$$ $$lim_{n \to \infty}\frac{1}{p^2+i\epsilon}\frac{1-(-im^2\frac{1}{p^2+i\epsilon})^n}{1+im^2\frac{1}{p^2+i\epsilon}}$$ $$lim_{n \to \infty}\frac{1-(-im^2\frac{1}{p^2+i\epsilon})^n}{p^2+i\epsilon+im^2}$$ I am not sure from here. How does that term behave as n goes to infinity? Also I have a factor of i with that ##m^2##
 
kelly0303 said:
Thank you for this so I have: $$\frac{1}{p^2+i\epsilon}-im^2(\frac{1}{p^2+i\epsilon})^2-m^4(\frac{1}{p^2+i\epsilon})^3+im^6(\frac{1}{p^2+i\epsilon})^4+...$$ $$\frac{1}{p^2+i\epsilon}(1-im^2\frac{1}{p^2+i\epsilon}-m^4(\frac{1}{p^2+i\epsilon})^2+im^6(\frac{1}{p^2+i\epsilon})^3+...)$$ $$lim_{n \to \infty}\frac{1}{p^2+i\epsilon}\frac{1-(-im^2\frac{1}{p^2+i\epsilon})^n}{1+im^2\frac{1}{p^2+i\epsilon}}$$ $$lim_{n \to \infty}\frac{1-(-im^2\frac{1}{p^2+i\epsilon})^n}{p^2+i\epsilon+im^2}$$ I am not sure from here. How does that term behave as n goes to infinity? Also I have a factor of i with that ##m^2##
There is a way to write the series in closed form. Consider

$$ S \equiv 1 + x + x^2 + \ldots $$

Then $$ S-1 = x S$$,
right? Then we can can solve for the sum S.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top