masterslave
- 8
- 0
Homework Statement
Let K be a Galois extension of F. Two intermediate fields E and L of field F are said to be conjugate if there exists
\sigma\in\text Gal_F K such that \sigma (E) = L.
Prove that E and L are conjugates of F if and only if \text Gal_E K and \text Gal_L K are conjugate subgroups of \text Gal_F K.
The Attempt at a Solution
From left to right, I have it already. I can't figure out how to get anywhere going from the right to left part of the proof.
I want to show that \sigma (E)=L for some \sigma\in Gal_F K.
Let \alpha\in Gal_L K , \beta\in Gal_E K.
Since Gal_L K, Gal_E Kare conjugates, then Gal_E K=\{\sigma\alpha\sigma^{-1} | \alpha\in Gal_L K\} or Gal_L K=\{\sigma^{-1}\beta\sigma | \beta\in Gal_E K\}.
\alpha=\sigma\beta\sigma^{-1}
\beta=\sigma^{-1}\alpha\sigma
I know that \beta fixes E and that \alpha fixes L.
\alpha (L)=\sigma\beta\sigma^{-1} (L)
\beta (E)=\sigma^{-1}\alpha\sigma (E)
L=\sigma\beta\sigma^{-1} (L)
E=\sigma^{-1}\alpha\sigma (E)
\sigma^{-1} (L)=\beta (\sigma^{-1} (L))
\sigma (E)=\alpha (\sigma (E))
\beta fixes \sigma^{-1} (L) and \alpha fixes \sigma (E)
\beta\in Gal_{\sigma^{-1} (L)} K and \alpha\in Gal_{\sigma (E)} K
From earlier: \beta\in Gal_E K and \alpha\in Gal_L K
So the only conclusion that I have is that the Gal_{\sigma (E)} K \cap Gal_L K and Gal_{\sigma^{-1} (L)} K \cap Gal_E K are nontrivial.
I feel like I should be using the Galois extension, i.e. Galois correspondence, to my advantage here, but I just don't see how it is applicable. It gives me that there exists a isomorphism from the intermediate fields to their respective Galois subgroup, i.e. \tau (E)=Gal_E K. And since isomorphisms are order preserving, I get \left| {Gal_E K} \right|=\left| {E} \right| and \left| {Gal_L K} \right|=\left| {L} \right|.
Any direction on the problem is appreciated.
Thanks in advance.
Last edited: