What Is the Correct Inverse Laplace Transform of \( \frac{s+1}{s^2 - 4s + 4} \)?

  • Thread starter Thread starter cabellos
  • Start date Start date
  • Tags Tags
    Inverse Laplace
cabellos
Messages
76
Reaction score
1
inverse laplace question help please...

i am trying find the inverse laplace transfor of s+1/s^2 -4s +4

using partial fractions and solving my answer is e^2t + 3e^2t

however checking this in an online fourier-laplace calculator it comes up with e^2t + 3te^2t

who is correct? could you show me how you get your answer please...

thanks
 
Physics news on Phys.org
Hello cabellos,

I get the same result as your calculator. You might have made a mistake while using the partial fractions method.

\frac{s+1}{s^2-4s+4}=\frac{s+1}{(s-2)^2}=\frac{1}{s-2}+\frac{3}{(s-2)^2}

Regards,

nazzard
 
Last edited:
hi, oops I am not awake :zzz: ...i used s-2 as the denominator for both A and B. Thanks
:smile:
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top