John O' Meara
- 325
- 0
\sqrt{z}=\sqrt{r}(\cos \frac{\theta}{2} + \pi \ + \ \iota \sin \frac{\theta}{2} +\pi)\\ ...(i)
Obtain from equation (i) this equation \sqrt{z} \ = \ +/- [\sqrt{\frac{1}{2} (\abs{z} + x)} \ + \ \mbox{ sign y} \ \iota \sqrt{\frac{1}{2} ( \abs{z}+x)}]\\.
Where sign y =1 it y greater than or equal to 0, sign y =-1 if y < 0 and all squares of positive numbers are taken with positive sign. And where on the rhs z=abs{z}.
Equation (i) =- \sqrt{r}(\cos \frac{\theta}{2} \ + \ \iota \sin \frac{\theta}{2} )\\
=> z = r(cos^2 \frac{\theta}{2} \ + \ 2 \iota \cos \frac{\theta}{2} sin\frac{ \theta}{2}\ + \ \iota^2 sin^2 \frac{\theta}{2}) \\
= r( \frac{1}{2}(1 \ + \ cos \theta ) \ + \ \iota sin \theta \ + \ \frac{1}{2}(1 \ - \ cos \theta))\\
= \frac{1}{2}r \ + \ \frac{1}{2} r cos\theta \ + \ \iota^2 \frac{r}{2} - \frac{1}{2} r cos \theta\\
= \frac{1}{2} (\abs{z} \ + \ x) \ + \ \iota y \ - \ \frac{1}{2}r \ + \ \frac{1}{2} ( \abs{z} \ - \ x)\\
THat is as far as I get in it. As you can see it is wrong. Note on the rhs z=abs{z}. Thanks for the help.
Obtain from equation (i) this equation \sqrt{z} \ = \ +/- [\sqrt{\frac{1}{2} (\abs{z} + x)} \ + \ \mbox{ sign y} \ \iota \sqrt{\frac{1}{2} ( \abs{z}+x)}]\\.
Where sign y =1 it y greater than or equal to 0, sign y =-1 if y < 0 and all squares of positive numbers are taken with positive sign. And where on the rhs z=abs{z}.
Equation (i) =- \sqrt{r}(\cos \frac{\theta}{2} \ + \ \iota \sin \frac{\theta}{2} )\\
=> z = r(cos^2 \frac{\theta}{2} \ + \ 2 \iota \cos \frac{\theta}{2} sin\frac{ \theta}{2}\ + \ \iota^2 sin^2 \frac{\theta}{2}) \\
= r( \frac{1}{2}(1 \ + \ cos \theta ) \ + \ \iota sin \theta \ + \ \frac{1}{2}(1 \ - \ cos \theta))\\
= \frac{1}{2}r \ + \ \frac{1}{2} r cos\theta \ + \ \iota^2 \frac{r}{2} - \frac{1}{2} r cos \theta\\
= \frac{1}{2} (\abs{z} \ + \ x) \ + \ \iota y \ - \ \frac{1}{2}r \ + \ \frac{1}{2} ( \abs{z} \ - \ x)\\
THat is as far as I get in it. As you can see it is wrong. Note on the rhs z=abs{z}. Thanks for the help.
Last edited: