What is the Derivative of f(x)=(x^2-1)^3?

  • Thread starter Thread starter jkeatin
  • Start date Start date
  • Tags Tags
    Derivatives
jkeatin
Messages
66
Reaction score
0

Homework Statement



f(x)= (x^2-1)^3

Homework Equations





The Attempt at a Solution


6x(x^2-1)^2 is that the solution using the chain rule
 
Physics news on Phys.org


Yes. That's the answer.
 


sweet I am so smart, are the Critical Numbers therefore 0,-1,1
 


You are REALLY smart! Except you should put '?' after a question.
 


lol thanks i think I am actually starting to get this ish
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top