Cincinnatus
- 389
- 0
I've recently come across this function in one of my science classes and am wondering were this identity comes from:
\displaystyle{\int{\delta(t-\tau)f(\tau)d\tau}=f(t)}
Where \delta(t) is the dirac delta function and f(t) is any (continuous?) function.
\displaystyle{\int{\delta(t-\tau)f(\tau)d\tau}=f(t)}
Where \delta(t) is the dirac delta function and f(t) is any (continuous?) function.
Last edited: