murshid_islam
- 468
- 21
suppose x is a real variable. what is the domain of the function \sqrt{{x-3}\over{x-1}}?
here {{x-3} \over {x-1}} \geq 0
from this we get the domain to be \left(-\infty, 1\right) \cup \left[3, \infty\right)
but if we write the function \sqrt{{x-3}\over{x-1}} = \frac{\sqrt{x-3}}{\sqrt{x-1}}
then x-3 \geq 0 \Rightarrow x \geq 3
and x-1 > 0 \Rightarrow x > 1
from these two, we get the domain \left[3, \infty\right)
why do i get two different domains?
here {{x-3} \over {x-1}} \geq 0
from this we get the domain to be \left(-\infty, 1\right) \cup \left[3, \infty\right)
but if we write the function \sqrt{{x-3}\over{x-1}} = \frac{\sqrt{x-3}}{\sqrt{x-1}}
then x-3 \geq 0 \Rightarrow x \geq 3
and x-1 > 0 \Rightarrow x > 1
from these two, we get the domain \left[3, \infty\right)
why do i get two different domains?
Last edited: