What Is the Effective Spring Constant of a Charged DNA Molecule?

AI Thread Summary
The discussion focuses on calculating the effective spring constant of a charged DNA molecule, which is 2.09 µm long and compresses by 1.13% when ionized. The compression distance is determined to be approximately 2.3617x10^-8 m. To find the force acting on the molecule, Coulomb's law is applied, requiring the charges of a proton and electron, both valued at 1.6x10^-19 C. Once the force is calculated using these charges, the spring constant can be derived from the equation F=kx. The problem was ultimately resolved by the original poster, confirming the use of proton and electron charges.
ccaramel
Messages
2
Reaction score
0
A molecule of DNA (deoxyribonucleic acid) is 2.09 µm long. The ends of the molecule become singly ionized -- negative on one end, positive on the other. The helical molecule acts like a spring and compresses 1.13% upon becoming charged. Determine the effective spring constant of the molecule.


equations that should be used are: F=kx and F=ke (Coulomb constant) q1q2 / r^2


you can find x, the distance the spring is compressed by multiplying 2.09x10^-6 x .0113 = 2.3617x10^-8 m

you can find the force by using coulomb's law; use have all the info to plug in except for the charges (q1 and q2). what are they? once you know the charges, you can solve for F and then plug into F=kx to solve for the spring constant. please help!
 
Physics news on Phys.org
nvm... i figured out the answer. the charges used are that of a proton and electron (1.6x10^-19)
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top