What is the Efficiency of a Heat Engine?

Click For Summary
SUMMARY

The efficiency of a hypothetical heat engine operating on an ideal gas is defined by the equation e = 1 - (1/γ)((1 - p3/p1)/(1 - v3/v1)), where γ = cp/cv. The discussion emphasizes the importance of calculating work and heat input to determine efficiency, utilizing the ideal gas law (PV = nRT) and the first law of thermodynamics. Key calculations involve integrating work over the adiabatic process and applying the relationship between pressure and volume for adiabatic conditions (PV^γ = constant).

PREREQUISITES
  • Understanding of thermodynamic cycles and efficiency calculations
  • Familiarity with the ideal gas law (PV = nRT)
  • Knowledge of adiabatic processes and the relationship between pressure and volume (PV^γ = constant)
  • Basic calculus for integration of work done (w = pdv)
NEXT STEPS
  • Study the derivation of the efficiency formula for adiabatic processes
  • Learn about the first law of thermodynamics and its application in cyclic processes
  • Explore the significance of specific heat capacities (cp and cv) in thermodynamic calculations
  • Investigate the implications of different thermodynamic cycles on engine efficiency
USEFUL FOR

Students and professionals in mechanical engineering, thermodynamics, and energy systems, particularly those focused on heat engine design and efficiency optimization.

  • #31
Okay so:

Work = Q_1_2 - Q_3_1

Q_{12) = (C_V (\frac{p_1v_3}{nR} - \frac{p_1v_1}{nR}) + (V_3 - V_1)P_1

Okay so Q23

Q = U + W along path 23

W = 0

\Delta U = C_P \Delta T (V const)

using Ideal gas law, T = PV/nR

\Delta T = \frac{P_3V_3}{nR} - \frac{P_1V_3}{nR}

\Delta U = C_P \frac{P_3V_3}{nR} - \frac{P_1V_3}{nR}

Q_{23} = C_P \frac{P_3V_3}{nR} - \frac{P_1V_3}{nR}


So:

e = \frac{Work}{Q_{12}}

Work = \left(C_V (\frac{p_1v_3}{nR} - \frac{p_1v_1}{nR}) + (V_3 - V_1)P_1\right) - \left(C_P \frac{P_3V_3}{nR} - \frac{P_1V_3}{nR}\right)

e = \frac{\left(C_V (\frac{p_1v_3}{nR} - \frac{p_1v_1}{nR}) + (V_3 - V_1)P_1\right) - \left(C_P \frac{P_3V_3}{nR} - \frac{P_1V_3}{nR}\right)}{(C_V (\frac{p_1v_3}{nR} - \frac{p_1v_1}{nR}) + (V_3 - V_1)P_1}


So does this look okay now?
 
Physics news on Phys.org
  • #32
TFM said:
...
So:

e = \frac{Work}{Q_{12}}

Work = \left(C_V (\frac{p_1v_3}{nR} - \frac{p_1v_1}{nR}) + (V_3 - V_1)P_1\right) - \left(C_P \frac{P_3V_3}{nR} - \frac{P_1V_3}{nR}\right)

e = \frac{\left(C_V (\frac{p_1v_3}{nR} - \frac{p_1v_1}{nR}) + (V_3 - V_1)P_1\right) - \left(C_P \frac{P_3V_3}{nR} - \frac{P_1V_3}{nR}\right)}{(C_V (\frac{p_1v_3}{nR} - \frac{p_1v_1}{nR}) + (V_3 - V_1)P_1}
Try:

Q_{12} = n\gamma C_v(T_2-T_1) and Q_{23} = nC_v(T_3-T_2)

\eta = W/Q_h = \frac{Q_{12} - Q_{23}}{Q_{12}} = \frac{(\gamma(T_2-T_1) - (T_3 - T_2)}{\gamma(T_2-T_1)}

Work out T1 and T3 using:

TV^{\gamma-1} = const.

ie.

T_3 = T_1\left(\frac{V_1}{V_3}\right)^{\gamma-1} = \frac{P_1V_1}{nR}\left(\frac{V_1}{V_3}\right)^{\gamma-1}

T_2 = P_1V_3/nR

AM
 
  • #33
I see. So:

Q = n C_P \Delta T

From the expression for gamma,

C_p = f C_V (I am using f because gamma doesn't show well on latex)

so

Q = n f C_V \Delta T


Q_{12} = n f C_V (T_2 - T_1)

Q_{23} = n C_V (T_3 - T_2)


e = W/Q_h = \frac{Q_{12} - Q_{23}}{Q_{12}}

\frac{Q_{12} - Q_{23}}{Q_{12}} = \frac{nf C_V (T_2 - T_1) - n C_V (T_3 - T_2)}{n f C_V (T_2 - T_1)}

Cancels to:

\frac{Q_{12} - Q_{23}}{Q_{12}} = \frac{f(T_2 - T_1) - (T_3 - T_2)}{f(T_2 - T_1)}

so using adiabatic law:

TV^f = c

T_{1}V_{1}^{f -1}= T_{3}V_{3}^{f-1}

T_{1}= T_{3}\frac{V_{3}^{f-1}}{V_{1}^{f -1}}

Use ideal gas law:

T = PV/nR

\T_1= \frac{P_3V_3}{nR}\frac{V_{3}^{f-1}}{V_{1}^{f -1}}

T_2 = \frac{P_1V_3}{nR}

T_3 = \frac{P_1V_1}{nR}\frac{V_{1}^{f-1}}{V_{3}^{f -1}}

so:

\frac{(f(\frac{P_1V_3} - \frac{P_3V_3}{nR}\frac{V_{3}^{f-1}}{V_{1}^{f -1}}) - (\frac{P_1V_1}{nR}\frac{V_{1}^{f-1}}{V_{3}^{f -1}} - \frac{P_1V_3})}{f(\frac{P_1V_3} - \frac{P_3V_3}{nR}\frac{V_{3}^{f-1}}{V_{1}^{f -1}})}

Okay so far?
 
  • #34
TFM said:
I
\frac{(f(\frac{P_1V_3} - \frac{P_3V_3}{nR}\frac{V_{3}^{f-1}}{V_{1}^{f -1}}) - (\frac{P_1V_1}{nR}\frac{V_{1}^{f-1}}{V_{3}^{f -1}} - \frac{P_1V_3})}{f(\frac{P_1V_3} - \frac{P_3V_3}{nR}\frac{V_{3}^{f-1}}{V_{1}^{f -1}})}

Okay so far?
Notice that:

\eta = \frac{(\gamma(T_2-T_1) - (T_3 - T_2)}{\gamma(T_2-T_1)}

reduces to:

\eta = 1 - \frac{1}{\gamma}\frac{(T_3 - T_2)}{(T_2-T_1)}

So you just have to show that:

\frac{(T_3 - T_2)}{(T_2-T_1)} = \frac{(1-\frac{P_3}{P_1})}{(1-\frac{V_3}{V_1})}

AM
 
  • #35
Andrew Mason said:
Notice that:

\eta = \frac{(\gamma(T_2-T_1) - (T_3 - T_2)}{\gamma(T_2-T_1)}

reduces to:

\eta = 1 - \frac{1}{\gamma}\frac{(T_3 - T_2)}{(T_2-T_1)}

I see that now.

\eta = \frac{(\gamma(T_2-T_1) - (T_3 - T_2)}{\gamma(T_2-T_1)}

is the same as:

\eta = \frac{(\gamma(T_2-T_1)}{\gamma(T_2-T_1)} - \frac{(T_3 - T_2)}{\gamma(T_2-T_1)}

Which cancels down to:

\eta = 1 - \frac{1}{\gamma}\frac{(T_3 - T_2)}{(T_2-T_1)}

Okay so:

\frac{(T_3 - T_2)}{(T_2-T_1)}

T_1= \frac{P_3V_3}{nR}\frac{V_{3}^{f-1}}{V_{1}^{f -1}}

T_2 = \frac{P_1V_3}{nR}

T_3 = \frac{P_1V_1}{nR}\frac{V_{1}^{f-1}}{V_{3}^{f -1}}

So:

\frac{(\frac{P_1V_1}{nR}\frac{V_{1}^{f-1}}{V_{3}^{f -1}} - \frac{P_1V_3}{nR})}{(\frac{P_1V_3}{nR} -\frac{P_3V_3}{nR}\frac{V_{3}^{f-1}}{V_{1}^{f -1}})}

Factorise out:

\frac{(\frac{P_1V_1}{nR}\frac{V_{1}^{f-1}}{V_{3}^{f -1}} - \frac{P_1V_3}{nR})}{\frac{V_3}{nR}(P_1 - P_3 \frac{V_3^{\gamma - 1}}{v_1^{\gamma - 1}})}

and:

\frac{\frac{p_1}{nR}(v_1\frac{v_1^{\gamma - 1}}{v_3^{\gamma - 1}} - V_3)}{\frac{V_3}{nR}(P_1 - P_3 \frac{V_3^{\gamma - 1}}{v_1^{\gamma - 1}})}


Does this look okay so far?
 
  • #36
I am also assuming that the nR can cancel, so:

P_1(v_1\frac{v_1^{\gamma - 1}}{v_3^{\gamma - 1}} - V_3)}{V_3(P_1 - P_3 \frac{V_3^{\gamma - 1}}{v_1^{\gamma - 1}})}

Does this look right?
 
  • #37
To be honest I have lost track. However, it would be desirable to simplify the term
v1 v1γ-1
The idea is, once you have an expression for the efficiency, for you to manipulate and simplify it algebraically and get

<br /> e = 1 - \frac{1}{\gamma}\left(\frac{1 - \frac{p_3}{p_1}}{1 - \frac{v_1}{v_3}}\right) <br />​

which, as I had mentioned earlier, has a typo corrected from what was given in Post #1 (v1/v3 instead of v3/v1).
 
  • #38
Oops, my Latex went a bit wrong. it should have been:

\frac{P_1(v_1\frac{v_1^{\gamma - 1}}{v_3^{\gamma - 1}} - V_3)}{V_3(P_1 - P_3 \frac{V_3^{\gamma - 1}}{v_1^{\gamma - 1}})}
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
3
Views
2K
Replies
14
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
866
  • · Replies 9 ·
Replies
9
Views
3K
Replies
1
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K