TFM
- 1,016
- 0
Okay so:
Work = Q_1_2 - Q_3_1
Q_{12) = (C_V (\frac{p_1v_3}{nR} - \frac{p_1v_1}{nR}) + (V_3 - V_1)P_1
Okay so Q23
Q = U + W along path 23
W = 0
\Delta U = C_P \Delta T (V const)
using Ideal gas law, T = PV/nR
\Delta T = \frac{P_3V_3}{nR} - \frac{P_1V_3}{nR}
\Delta U = C_P \frac{P_3V_3}{nR} - \frac{P_1V_3}{nR}
Q_{23} = C_P \frac{P_3V_3}{nR} - \frac{P_1V_3}{nR}
So:
e = \frac{Work}{Q_{12}}
Work = \left(C_V (\frac{p_1v_3}{nR} - \frac{p_1v_1}{nR}) + (V_3 - V_1)P_1\right) - \left(C_P \frac{P_3V_3}{nR} - \frac{P_1V_3}{nR}\right)
e = \frac{\left(C_V (\frac{p_1v_3}{nR} - \frac{p_1v_1}{nR}) + (V_3 - V_1)P_1\right) - \left(C_P \frac{P_3V_3}{nR} - \frac{P_1V_3}{nR}\right)}{(C_V (\frac{p_1v_3}{nR} - \frac{p_1v_1}{nR}) + (V_3 - V_1)P_1}
So does this look okay now?
Work = Q_1_2 - Q_3_1
Q_{12) = (C_V (\frac{p_1v_3}{nR} - \frac{p_1v_1}{nR}) + (V_3 - V_1)P_1
Okay so Q23
Q = U + W along path 23
W = 0
\Delta U = C_P \Delta T (V const)
using Ideal gas law, T = PV/nR
\Delta T = \frac{P_3V_3}{nR} - \frac{P_1V_3}{nR}
\Delta U = C_P \frac{P_3V_3}{nR} - \frac{P_1V_3}{nR}
Q_{23} = C_P \frac{P_3V_3}{nR} - \frac{P_1V_3}{nR}
So:
e = \frac{Work}{Q_{12}}
Work = \left(C_V (\frac{p_1v_3}{nR} - \frac{p_1v_1}{nR}) + (V_3 - V_1)P_1\right) - \left(C_P \frac{P_3V_3}{nR} - \frac{P_1V_3}{nR}\right)
e = \frac{\left(C_V (\frac{p_1v_3}{nR} - \frac{p_1v_1}{nR}) + (V_3 - V_1)P_1\right) - \left(C_P \frac{P_3V_3}{nR} - \frac{P_1V_3}{nR}\right)}{(C_V (\frac{p_1v_3}{nR} - \frac{p_1v_1}{nR}) + (V_3 - V_1)P_1}
So does this look okay now?