What Is the Electric Field at the Origin Due to an Infinitely Long Charged Wire?

  • Thread starter Thread starter mrjeffy321
  • Start date Start date
  • Tags Tags
    Electrostatic
AI Thread Summary
The discussion revolves around solving problems related to electric fields generated by charged objects. The first problem involves finding the equilibrium distance between two charged spheres, where the forces acting on a middle sphere must balance; however, the numerical solution provided was rejected by the homework system. The second problem deals with two oppositely charged spheres hanging at an angle, requiring the calculation of the net electric field, but the contributor expressed uncertainty about their approach. The third problem involves a semicircular charged wire, where the contributor understands the conceptual direction of the force but struggles with the mathematical integration to find the electric field at the center. Lastly, a symbolic problem concerning an infinitely long charged wire prompts a discussion on the integration approach to determine the electric field at the origin.
mrjeffy321
Science Advisor
Messages
876
Reaction score
1
1) At the two ends of a pole there are two + charged spheres…one has a charge n times that of the other (nq and q) [I actually have a numerical value for n to use to find my final answer]. Along this pole, of length we will call d, there is another charged sphere which is located at an equilibrium position we will call x units away from the first sphere. My task is to find the distance x. I will call the distance of the middle sphere from the “right” sphere y = d – x.

To solve this one needs to realize that in order for the middle sphere to be at equilibrium the net force acting on it must be zero. There the force acting on it from the “left” sphere must equal the force acting on it from the “right” sphere.
Setting the two electrostatic forces equal to each other, I get,
n / x^2 = 1/y^2 --> y * sqrt (n) = x
(d – x)*sqrt (n) = x --> x = d * [sqrt (n) / (1 + sqrt(n))]
When I plug in my numerical value for n, I get an answer which seems reasonable and checks out mathematically by choosing some arbitrary value of d, but apparently it is wrong (the computerized homework system doesn’t accept it).
___________________________________________

2) In this problem, two charged spheres hand from the ceiling on strings (of negligible mass of course…this is a physics problem). Each sphere has a mass of m grams, has a charge of +c C on one and -c C on the other, and hangs at an angle of θ degrees away from the vertical. There is some “extra” electric field applied to the space around the spheres, call it E, which I am trying to find.
I have actual, numerical, values for m, c, and θ to use for calculation purposes.

To solve this problem, I found the weight of each sphere, the found the electrostatic force required for each sphere to hand at the angle that do (resultant force acting on sphere from gravity and electric forces must be equal in magnitude to the force of tension in the string, but in the opposite direction. Drawing the force diagram, the force of weight, mg, is direction downward and the electrostatic force for both spheres are directed away from the vertical.
Once I found the electrostatic force I was able to find the net electric field at that point (F_e = q * E). I found the electric field to be about ___ kN/C (the actual value is irrelevant, assuming I calculated it correctly). But that is the “net” field (if there was such a word). Remembering that since the spheres are oppositely charged, there is some attractive force between them which needed to be overcome by this extra applied field. I found what the electric field would be had there not been this extra applied field and if the two spheres were in their current position, this field was much stronger, over 10 times stronger, and in the “opposite” direction. So to solve for the applied field, I simply subtracted the “net” field from what the field would have been without it and found the difference (about ____ kN/C).
But apparently this is wrong too and I not quite as confident in this answer as I am in the first question. In solving this problem, I totally ignored the fact that there were two charged spheres until the very end, should I have done this?
___________________________________

3) In the next problem there is a thin charged wire which is bent into a semicircle.
The wire has a linear charge density of lambda = lambda_0 * cos (θ), where θ is the reference angle as measured from the straight up vertical.
At the center of what would be the circle (at radius R away from all points along the wire), sits a point charge of magnitude c C.
I am at a loss for how to solve this problem. Conceptually, I know that the force will be entirely directed downward and away from the wire since the sides of the semi-circle cancel each other out in the +- X direction, for the only force in the –Y direction. However, I am not sure how to figure out just what this force is.
The charge on the wire is symmetrical along the wire around the “top” of the semi-circle, lessening nearer the edges.

_________________________

I could provide more numbers of pictures if it would help.
On the first two questions, I think I have the procedure down (maybe), but the numbers just aren’t coming out…on the 3rd question, I don’t really know where to begin.
 
Physics news on Phys.org
3) In the next problem there is a thin charged wire which is bent into a semicircle.
The wire has a linear charge density of lambda = lambda_0 * cos (θ), where θ is the reference angle as measured from the straight up vertical.
At the center of what would be the circle (at radius R away from all points along the wire), sits a point charge of magnitude c C.
I am at a loss for how to solve this problem. Conceptually, I know that the force will be entirely directed downward and away from the wire since the sides of the semi-circle cancel each other out in the +- X direction, for the only force in the –Y direction. However, I am not sure how to figure out just what this force is.
The charge on the wire is symmetrical along the wire around the “top” of the semi-circle, lessening nearer the edges.
What are you looking for in this one?

To find the electric field of the semicircle:
E = \int{dE} = \int{\frac{dq}{4\pi \epsilon_0 r^2} \hat{r}}.

You also know that dq = \lambda \cos{\theta} R d\theta. Remember, when you integrate, to keep the cosine inside the integral.
 
The goal on question 3) is to find the total force acting on the charged object at the center of the charged semi-circle.

In the Integral you have to find the electric field, everything in it, but theta, is a constant, so it just comes down to integrating cos(theta) which is not hard. However, in order to actually use it in my calculation, would it not need to be a definite integral, integrating from -pi/2 to pi/2?
So it would be,
(K_e * lambda_0 / R) * [sin(theta)] evaluated at theta = -pi/2 to pi/2,
giving me,
-2 * K_e * lamba_0 / R, all of which are constants. If this is the electric field, then the rest of the problem is trivial.
[Ah :confused: , but no, the numbers still arent coming out right, so says the computer]
 
OK, I figured out numbers 1) and 2)...you wouldn't believe what was wrong, it was due to the fact that I did not put a leading zero on my answer when I was entering it into the computer (the correct format was 0.123 rather than just .123).

But I am still having problems in the semi-circle question, as well as with a new question...

4) In this question, an infinitely long wire with a uniform linear charge density of lambda_0 is placed along a coordinate grid. The wire starts at a point given as -y_0 and extends on in the -y direction forever.
I am asked to find the electric field at the origin.
This is a purely symbolic problem, no numbers.

I think I should integrate and sum up the charge on the wire.
I think it should be,
Integral of ( ((K_e * lambda_0) / r) dr) from -y_0 to negative infinity

Does this look right?
 
Last edited:
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top