Petar Mali
- 283
- 0
Homework Statement
The space between the two concentric spheres is charged by spatial density of charge \rho=\frac{\alpha}{r^2}. The radius of spheres are R_1,R_2. Integral charge is Q. Find energy of electrostatic field.
Homework Equations
Gauss law
\oint_S\vec{E} \cdot d{\vec{S}}=\frac{q}{\epsilon_0}
W_E=\frac{1}{2}\epsilon_0\int_VE^24\pi r^2dr
The Attempt at a Solution
Using Gauss law I get
E^{(1)}=0, for r<R_1
E^{(2)}(r)=\frac{1}{\epsilon_0}\cdot \frac{Q}{4\pi(R_2-R_1)}\frac{r-R_1}{r^2}
for R_1\leq r \leq R_2
E^{(3)}(r)=\frac{Q}{4\pi\epsilon_0r^2}, for r>R_2
And get W_E^{(1)}=0
W_E^{(2)}=\frac{Q^2}{8\pi\epsilon_0(R_2-R_1)}(1+\frac{2R_1}{R_2-R_1}ln\frac{R_2}{R_1}+\frac{R_1}{R_2})
W_E^{(3)}=\frac{Q^2}{8\pi\epsilon_0R_2}
This is my solution.
Final solution from book is
W_E^{(1)}=W_E^{(3)}=0
W_E^{(2)}=\frac{Q^2}{4\pi\epsilon_0(R_2-R_1)}(1+\frac{2R_1}{R_2-R_1}ln\frac{R_2}{R_1})
Where I make a mistake?