ArcanaNoir
- 778
- 4
Homework Statement
Finding the expected value of x, with poisson distribution. I don't follow the sum. It goes like this:
E(x)= \sum_{x=0}^{\infty} \frac{xe^{-\lambda}\lambda^x}{x!}
= e^{-\lambda} \sum_{x=0}^{\infty} \frac{x\lambda^x}{x(x-1)!}
= \lambda e^{-\lambda} \sum_{x=1}^{\infty} \frac{\lambda^{x-1}}{(x-1)!}
= \lambda e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!}
= \lambda e^{-\lambda}e^{\lambda} = \lambda
So basically the part I don't get is why they say
\sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} = e^{\lambda}