What is the Factor of F in the Differential Forms Problem on Smooth Manifolds?

Fredrik
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
Gold Member
Messages
10,876
Reaction score
423
Introduction to smooth manifolds, by John Lee, page 304. The right-hand side of (c) near the top of the page has a factor \omega_I\circ F. I've been doing the calculation over and over for hours now and I keep getting just \omega_I. Is that F supposed to be there?

Edit: I should add that \omega_I=\omega(\partial_{i_1},\dots,\partial_{i_k}), so the left-hand side is just F^*\omega.
 
Last edited:
Physics news on Phys.org
Well, mmh... (3) can be proven from (1) and (2) and the facts that
(a) the pullback commutes with the exterior derivative
(b) the pullback of a 0-form f is f o F.

Granted this,
F^*\left(\sum'_I\omega_Idy^I\right)=\sum'F^*\omega_{i_1,...,i_k}F^*dy^{i_1}\wedge ...\wedge F^*dy^{i_k}=\sum'(\omega_{i_1,...,i_k}\circ F) d(y^{i_1}\circ F)\wedge ...\wedge d(y^{i_k}\circ F)
 
Thank you. That solved the problem for me. After a few minutes of verifying the relavant identities, I understand your solution perfectly. But I still don't see what's wrong with my failed attempt. Experience tells me that I'll see it just before I'm done typing this, but if you're reading this I guess it didn't work out that way.

F^*\omega(X_1,\dots,X_k)=\omega(F_*X_1,\dots,F_*X_k)=\sum_I{}^{'} \omega_I\ dy^{i_1}\wedge\dots\wedge dy^{i_k}(F_*X_1,\dots,F_*X_k)

=\sum_I{}^{'} \omega_I\ \sum_J(F_*X_1)(y^{j_1})\cdots (F_*X_1)(y^{j_k})\ dy^{i_1}\wedge\dots\wedge dy^{i_k}\left(\frac{\partial}{\partial y^{j_1}},\dots,\frac{\partial}{\partial y^{j_k}}\right)

Note that

(F_*X_1)(y^{j_1})=X_1(y^{j_1}\circ F)

and that this is a component of X_1 in the coordinate system y\circ F. We also have

dy^{i_1}\wedge\dots\wedge dy^{i_k}\left(\frac{\partial}{\partial y^{j_1}},\dots,\frac{\partial}{\partial y^{j_k}}\right)=\delta^I_J

where the delta is =0 unless there's exactly one permutation P that takes I to J, and =sgn P if there is. Since y\circ F is a coordinate system too, we can also write

d(y^{i_1}\circ F)\wedge\dots\wedge d(y^{i_k}\circ F)\left(\frac{\partial}{\partial (y\circ F)^{j_1}},\dots,\frac{\partial}{\partial (y\circ F)^{j_k}}\right)=\delta^I_J

So the original expression can be written as

\sum_I{}^{'} \omega_I\ \sum_J X_1(y^{j_1}\circ F)\cdots X_1(y^{j_k}\circ F)\ d(y^{i_1}\circ F)\wedge\dots\wedge d(y^{i_k}\circ F)\left(\frac{\partial}{\partial (y\circ F)^{j_1}},\dots,\frac{\partial}{\partial (y\circ F)^{j_k}}\right)

=\sum_I{}^{'} \omega_I\ \sum_J d(y^{i_1}\circ F)\wedge\dots\wedge d(y^{i_k}\circ F)(X_1,\dots,X_k)

which is everything we want, except that \omega_I hasn't changed. I still don't see what I've done wrong, so I'll post this so you can point and laugh.
 
Fredrik said:
F^*\omega(X_1,\dots,X_k)=\omega(F_*X_1,\dots,F_*X_k)=[...]

You can't really write this because if F:M-->N, then F*w is a k-form on M, while w is a k-form on N. So the LHS is a map M-->R and the RHS is a map N-->R. So it is important to keep track of the point p in M at which the map of the LHS is evaluated. If you follow the definition of F*w given by Lee on page 303, you will agree that when evaluated at p in M, the equation you meant to write is actually

(F^*\omega)_p(X_1|_p,\dots,X_k|_p)=\omega_{F(p)}(F_*(X_1|_p),\dots,F_*(X_k|_p))

and then when you expand the RHS, you will have

\sum_I \omega_I(F(p))\ dy^{i_1}|_{F(p))}\wedge\dots\wedge dy^{i_k}|_{F(p))}(F_*(X_1|_p),\dots,F_*(X_k|_p))<br />

etc.
 
Thank you again. I understand now.
 
Back
Top