What is the fermi energy measured relative to?

Repetit
Messages
128
Reaction score
2
Hey!

When we say that the fermi energy of a certain metal is for example 2 eV what are the 2 eV measure relative to? The top of the valence band? If so, wouldn't the fermi energy of a semiconductor at 0 K be 0 eV?

Thanks
 
Physics news on Phys.org
Repetit said:
Hey!

When we say that the fermi energy of a certain metal is for example 2 eV what are the 2 eV measure relative to? The top of the valence band? If so, wouldn't the fermi energy of a semiconductor at 0 K be 0 eV?

Thanks

In the case of a metal, the WF is expressed with respect to the vacuum level : "the work function it the energy needed to bring an electron from the fermi level to the vacuum level AND KEEP IT THERE"

What i mean with the addendum "KEEP IT THERE" is that once you bring an electron "outside" a material into the vacuum, there is going to be an image potential that wants to pull back the electron towards the material's surface. So a WF must also include this : not only is it the energy to get an electron outside the metal (ie get it out of the conduction band in the case of metals for example) and to [ii] put the electron into the vacuum (ie overcome the surface potential) but also to [iii] keep the electron at the vacuum level (ie overcome the image potentials).

In the case of SC's, the fermi level does not really exist. I mean, fermi level is defined for metals. In the SC case, the proper term is chemical potential.

marlon
 
A formal definition of fermi level in SC's is th chemical potential at T=0K.
 
can metal be associated with two fermi levels
 
This thread is four years old.
 
From the BCS theory of superconductivity is well known that the superfluid density smoothly decreases with increasing temperature. Annihilated superfluid carriers become normal and lose their momenta on lattice atoms. So if we induce a persistent supercurrent in a ring below Tc and after that slowly increase the temperature, we must observe a decrease in the actual supercurrent, because the density of electron pairs and total supercurrent momentum decrease. However, this supercurrent...
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...
Back
Top