What is the Final Step for Proving Trig Identity with Given A+B+C=π?

  • Thread starter Thread starter whkoh
  • Start date Start date
  • Tags Tags
    Identity
AI Thread Summary
The discussion focuses on proving the trigonometric identity given that A + B + C = π. The user initially attempts to manipulate the left-hand side (LHS) of the equation but encounters an error. They realize that the right-hand side (RHS) should include cos C instead of sin C for the identity to hold true. The correction leads to a successful resolution of the problem. The final conclusion emphasizes the importance of accurately identifying trigonometric functions in proofs.
whkoh
Messages
29
Reaction score
0
Prove (given that A+B+C=π):
\sin^2 A + \sin^2 B - \sin^2 C = 2 \sin A \sin B \sin C
I got this far:
\begin{matrix}\mbox{LHS} & = & \sin^2 A + \sin^2 B - \sin^2 C \\ \ & = & \sin^2 A + \left ( \sin B + \sin C \right ) \left ( \sin B - \sin C \right ) \\ \ & = & \sin^2 A + \left ( 2 \sin \frac{B+C}{2} \cos \frac{B-C}{2} \right) \left ( 2 \cos \frac{B+C}{2} \sin \frac{B-C}{2} \right ) \\ \ & = & \sin^2 A + \left (2 \sin \frac{A}{2} \cos \frac{B-C}{2} \right) \left ( 2 \cos \frac{-A}{2} \sin \frac{B-C}{2} \right ) \\ \ & = & \sin^2 A + \left ( -2 \sin \frac{A}{2} \cos \frac{A}{2} \right ) \left ( 2 \cos \frac{B-C}{2} \sin \frac{B-C}{2} \right ) \\ \ & = & \sin^2 A + \left ( -2 \sin A \right ) \left (2 \cos \frac{B-C}{2} \sin \frac{B-C}{2} \right ) \end{matrix}

Help please...

TIA
 
Last edited:
Physics news on Phys.org
In its current form, it's false. Try a = b = c = pi/3.
 
Never mind, I got it already... right hand side should be cos C instead of sin C.
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top