What is the General Solution for the Schrödinger Equation in a 2D or 3D Box?

kasse
Messages
383
Reaction score
1
The solution of the one dimensional Schrödinger equation for a particle in a one dimensional box is Asin \frac{n \pi x}{a}. But how about if the box is 2D or 3D?
 
Physics news on Phys.org
Have you considered actually solving the Schroedinger equation for these cases?...An attempt at that would probably be a good way to start.
 
What is the general solution then?
 
kasse said:
What is the general solution then?

Show us an attempt and I'll be happy to help you. Start with the 2D case.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top