Prologue said:
Also, what other books would you recommended?
The funny thing is that while I more or less majored in symmetry in grad school, since then I've drifted to a different assumption about the foundations of elementary particles, geometry. Symmetry is very general; following Noether, any reasonable differential equation has some symmetry (translational and rotational at least). So physics, like a practical engineer, takes data and then looks to see if a symmetry can be fit to it.
But I eventually realized that there are very simple differential equations which have rather complicated symmetries. In fact this is the usual case. An example is Newton's gravitation; the differential equation is much simpler than the equations for the conserved quantities (i.e. energy, angular momentum).
And differential equations have information not present in their symmetries. For example, symmetry will give you the structure of the excitations of hydrogen by orbital angular momentum, but to actually get the energy levels you need to guess the differential equation, that is, the Coulomb interaction.
If it's the case that the underlying differential equation is simpler than the symmetries (and approximate symmetries) it produces, then it might be possible to guess that differential equation. One would then check that the guess produces the observed symmetries and use the guess to evaluate things that are now considered arbitrary constants determined by experiment.
So I decided that an under researched (and therefore easily published) idea was to try to describe the elementary particles entirely from geometry and quantum mechanics with no use of symmetry other than the symmetry of space-time (or maybe just space). For example, see my recently accepted paper proposing a relationship between spin-1/2 and the 3 generations. This is quantum field theory, but on a finite space instead of the usual infinite position / momentum space. I think this makes it an easier intro to QFT:
http://arxiv.org/abs/1006.3114
I started writing a book giving a geometric foundation to the standard model but I quit working on it when I concluded that no one was going to read it until I published the details in peer reviewed journals. So it's kind of dated and incomplete, but it gives a good explanation of what spinors really are, from a geometric point of view, and it is intended to be understood by beginning grad students:
www.brannenworks.com/dmaa.pdf
I should probably add that I didn't finish my PhD. I passed the examinations (at U. Cal., Irvine) but couldn't decide on a thesis and left to do engineering. I just took the general GREs and intend on starting grad school again in fall 2011.