I What Is the Geometrical Interpretation of Bounded Curves?

  • I
  • Thread starter Thread starter wrobel
  • Start date Start date
  • Tags Tags
    Bounded Curves
AI Thread Summary
A curve in R^3 is defined by its curvature and torsion, which are functions of the arc-length parameter. The discussion highlights the challenge of restoring curve features from these functions, as the Frenet-Serret equations are not generally integrable. A key property of interest is boundedness, defined by the boundedness of the radius-vector. If the ratio of curvature to torsion is monotone and approaches zero as the arc-length increases, the curve is unbounded. The conversation invites further exploration of the geometrical interpretation of these concepts and seeks clarification on the meaning of bounded curves.
wrobel
Science Advisor
Insights Author
Messages
1,141
Reaction score
987
It is well known that a curve in ##\mathbb{R}^3## is uniquely (up to a position in the space) defined by its curvature ##\kappa(s)## and torsion ##\tau(s)##, here ##s## is the arc-length parameter. We will consider ##\kappa(s),\tau(s)\in C[0,\infty)##

Thus a natural problem arises: to restore features of the curve from given functions ##\kappa(s),\tau(s)##. This is not a simple problem: the Frenet-Serret equations are not in general integrable explicitly.A simplest property of the curve is boundedness. We shall say that a curve is bounded iff its radius-vector is bounded: $$\sup_{s\ge 0}|\boldsymbol r(s)|<\infty.$$

For example, if a function ##\kappa(s)/\tau(s)## is monotone and
$$\lim_{s\to\infty}\frac{\kappa(s)}{s\cdot\tau(s)}=0$$ then the curve is unbounded. This is an almost trivial fact, it follows from some another almost trivial theorem, for details see http://www.ma.utexas.edu/mp_arc/c/16/16-63.pdf

The comments are welcome. Particularly is there a geometrical interpretation of brought above proposition
 
Last edited:
Mathematics news on Phys.org
wrobel said:
It is well known that a curve in ##\mathbb{R}^3## is uniquely (up to a position in the space) defined by its curvature ##\kappa(s)## and torsion ##\tau(s)##, here ##s## is the arc-length parameter. We will consider ##\kappa(s),\tau(s)\in C[0,\infty)##

Thus a natural problem arises: to restore features of the curve from given functions ##\kappa(s),\tau(s)##. This is not a simple problem: the Frenet-Serret equations are not in general integrable explicitly.A simplest property of the curve is boundedness. We shall say that a curve is bounded iff its radius-vector is bounded: $$\sup_{s\ge 0}|\boldsymbol r(s)|<\infty.$$

For example, if a function ##\kappa(s)/\tau(s)## is monotone and
$$\lim_{s\to\infty}\frac{\kappa(s)}{s\cdot\tau(s)}=0$$ then the curve is unbounded. This is an almost trivial fact, it follows from some another almost trivial theorem, for details see http://www.ma.utexas.edu/mp_arc/c/16/16-63.pdf

The comments are welcome. Particularly is there a geometrical interpretation of brought above proposition
I find it amazing. But will you explain me the restore features of curve. Actually I am going to read about curves in detail but I need little guidance. Can you name some of the books which I can buy.
 
I was saying that why you have used word bounded curves. Will you tell me its precise meaning.
 
Be more specific what you are saying
 
shina said:
was saying that why you have used word bounded curves. Will you tell me its precise meaning.
I have already done that
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...

Similar threads

Replies
1
Views
3K
Replies
1
Views
4K
Replies
125
Views
19K
4
Replies
175
Views
25K
Back
Top