What is the Higgs particle and what does it do for us?

  • Thread starter Thread starter edpell
  • Start date Start date
  • Tags Tags
    Higgs Particle
edpell
Messages
282
Reaction score
4
What is the Higgs particle and what does it do for us?

How will LHC detect it? What is the signature?

Thanks.
 
Physics news on Phys.org


This is what a simulated higgs event will look like: http://atlas.ch/photos/events-simulated-higgs-boson.html"

The Higgs-boson in short explains why some bits are mass-less and others have mass
 
Last edited by a moderator:


Higgs boson (Wikipedia)
 


Thank you.
 
Thread 'Why is there such a difference between the total cross-section data? (simulation vs. experiment)'
Well, I'm simulating a neutron-proton scattering phase shift. The equation that I solve numerically is the Phase function method and is $$ \frac{d}{dr}[\delta_{i+1}] = \frac{2\mu}{\hbar^2}\frac{V(r)}{k^2}\sin(kr + \delta_i)$$ ##\delta_i## is the phase shift for triplet and singlet state, ##\mu## is the reduced mass for neutron-proton, ##k=\sqrt{2\mu E_{cm}/\hbar^2}## is the wave number and ##V(r)## is the potential of interaction like Yukawa, Wood-Saxon, Square well potential, etc. I first...
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...

Similar threads

Replies
11
Views
3K
Replies
8
Views
2K
Replies
7
Views
3K
Replies
9
Views
2K
Replies
49
Views
5K
Replies
13
Views
3K
Back
Top