What is the indefinite integral of cosecant function?

JamesGoh
Messages
140
Reaction score
0
What is the indefinite integral of cosec(\theta)?
 
Physics news on Phys.org
cosc(x)= \frac{1}{sin(x)}.

\int cosec(x)dx= \int \frac{1}{sin(x)}dx= \int\frac{sin(x)}{sin^2(x)}dx= \int\frac{sin(x)}{1- cos^2(x)}dx.

Now let u= cos(x) so that du= -sin(x)dx.
 
  • Like
Likes 1 person
If you know the trick to integrate ##sec(x)##, try it with the co-functions instead.
 
Here's an alternative solution: $$\eqalign{
\int\csc x\,\mathrm dx &= \int\left(\csc x\dfrac{\csc x-\cot x}{\csc x-\cot x}\right)\mathrm dx \\
&=\int\left(\dfrac{\csc^2 x-\cot x\csc x}{\csc x-\cot x}\right)\mathrm dx.
}$$
Now use the u-substitution u=\csc x-\cot x and you'll get: $$\int\dfrac{1}{u}\mathrm du=\ln|u|+{\cal C}=\ln|\csc x-\cot x|+{\cal C}.$$
 
Back
Top